摘要
在线性赋范空间中,应用Ishikawa迭代序列证明了3个不动点定理,这些定理也推广了PathakHK和KangSM等人的一些结果。设E是赋范线性空间X的凸子集,T是E到E的自映射,F(T)≠Φ,若对任意x1∈E,迭代序列M(x1,αn,βn,T)收敛于p,则p∈F(T)。又若X是一致凸的Banach空间,E是X的闭凸子集,T:E→E为自映射,对任意x0∈E,定义序列xn+1=(1-cn)xn+cnTxn,则迭代序列{xn}n∞=1若收敛于p,则p∈F(T)。
In normed linear spaces, Ishikawa iterative sequence is used to provide three fixed point theorems. These theorems extend Pathak H K and Kang S M's fixed point theorems. Let X be a normed linear space, E a nonempty closed,bunded convex subset of X, T:E→ E, F(T)≠Ф Let x1 be any point in E ,If M(x1,αN,βN,T) converges to p , then p ∈ F(T) . Let X be a uniformly convexx Banach space, E a closed convex subset of X and let T be self map on E . Let x0 be any point in E . then the sequence │xn│∞b=1 converges to p ∈ F(T) , where xn is defined, iteratively for each positive integer. n hy xn+1= ( 1 - cn ) xn + cnTxn
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2005年第4期495-497,共3页
Journal of Nanjing University of Science and Technology
关键词
线性赋范空间
不动点
自映射
闭凸子集
normed linear space
fixed point
self map
closed convex subset