期刊文献+

一类两维光学格子中稳定的复合孤子 被引量:1

A new class of stable composite soliton in two-dimensional photonic lattice
原文传递
导出
摘要 对两维光学格子中非线性薛定谔方程一类新的稳态解做了数值分析,发现其在传播过程中逐渐衰变为一种稳定的复合孤子,孤子的两分量在传播过程中不断交换能量,总能量守恒. We demonstrate that a new class of stable composite soliton exists in a two-dimensional lattice. It can be produced by the evolution of a stationary solution of nonlinear Schordinger equation with a periodic potential modulation. We emphasize that this new kind of composite soliton is different from the dipole soliton reported before though they seem alike. The components of the soliton exchange energy during the propagations and the total energy of soliton conserves.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第9期4458-4462,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10274078)资助的课题.~~
关键词 稳态解 两维格子 孤子 光学格子 复合 两维 非线性薛定谔方程 总能量守恒 传播过程 数值分析 stationary solution, two-dimensional lattice, composite soliton
  • 相关文献

参考文献1

二级参考文献1

共引文献9

同被引文献19

  • 1董亮伟,叶芳伟,王建东,李永平.带有相反拓扑指数的光学涡流间相互作用研究[J].物理学报,2004,53(10):3353-3357. 被引量:10
  • 2REITZE A,WEINER H,LEAIRD D.High-power femtosecond optical pulse compression by using spatial solitons[J].Opt Lett,1991,16(18):1409-1411. 被引量:1
  • 3SCHEUER J,ORENSTEIN M.Interactions,switching of spatial soliton pairs in the vicinity of a nonlinear interface[J].Opt Lett,1999,24(23):1735-1737. 被引量:1
  • 4PRAMONO Y,GESHIRO M,KITAMURA T,et al.Optical logic OR-AND-NOT and NOR gates in waveguides consisting of nonlinear materia[J].Trans Elect,2000,E83-C(11):1755-1761. 被引量:1
  • 5ACEVES A,MOLONEY J,NEWELL A.Theory of lightbeam propagation at nonlinear interfaces Ⅰ:equivalent-particle theory for a single interface[J].Phys Rev A,1989,39(4):1809-1827. 被引量:1
  • 6GARZIA F,SIBILIA C,BERTOLOTTI M.Swing effect of spatial soliton[J].Opt Commun,1997,139:193-198. 被引量:1
  • 7SURYANTO A,GROESEN E.On the swing effect of spatial inhomogeneous solitons[J].Journal of Nonlinear Optical Physics and Materials,2001,10(2):143-152. 被引量:1
  • 8KARTASHOV Y,VYSLOUKH V,TORNER L.Tunable soliton self-bending in optical lattices with nonlocal nonlinearity[J].Phys Rev Lett,2004,93(15):153903. 被引量:1
  • 9KARTASHOV Y,CRASOVAN L C,ZELENINA A,et al.Soliton eigenvalue control in optical lattices[J].Phys Rev Lett,2004,93(14):143902. 被引量:1
  • 10KARTASHOV Y,VYSLOUKH V,TORNER L.Packing,unpacking,and steering of multicolor solitons in optical lattices[J].Opt Lett,2004,29(12):1399-1401. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部