期刊文献+

STABILITY ANALYSIS OF H-R NEURON MODEL WITH FRACTIONAL ORDERS

STABILITY ANALYSIS OF H-R NEURON MODEL WITH FRACTIONAL ORDERS
原文传递
导出
摘要 In this paper,we are concerned with a Hindmarsh-Rose(H-R) neuron model of fractional orders.By employing stability theory,we present some sufficient conditions ensuring the equilibrium of system to be stable.The simulations are provided to verify the theoretical results. In this paper,we are concerned with a Hindmarsh-Rose(H-R) neuron model of fractional orders.By employing stability theory,we present some sufficient conditions ensuring the equilibrium of system to be stable.The simulations are provided to verify the theoretical results.
出处 《Annals of Differential Equations》 2012年第3期358-362,共5页 微分方程年刊(英文版)
基金 National Natural Science Foundation of China(No.61174155 No.11032009)
关键词 fractional order H-R neuron model STABILITY equilibrium point fractional order H-R neuron model stability equilibrium point
  • 相关文献

参考文献10

  • 1王振滨,曹广益,朱新坚.分数阶线性定常系统的稳定性及其判据[J].控制理论与应用,2004,21(6):922-926. 被引量:21
  • 2La Rosa M,Rabinovich M I,Huerta R, et al.Slow regularization through chaotic oscillation transfer in a unidirectional chain of Hindmarsh-Rose modelsPhysicsLetter A,2000. 被引量:1
  • 3Wang Jiang,Zhang Zhen,Li Huiyan.Synchronization of Fitz-Hugh-Nagumo systems in EES via H∞variable uni-verse controlChaos Solitons Fractals,2008. 被引量:1
  • 4Q.J. Wu,J. Zhou,L. Xiang,Z.R. Liu.Impulsive Control and Synchronization of Chaotic Hindmarsh-Rose Models for Neuronal ActivityChaosSolitions and Fractals,2009. 被引量:1
  • 5Podlubny I.Fractional Differential Equations,1999. 被引量:3
  • 6S.Tsuji,T.Ueta,H.Kawakami,H.Fujii,K.Aihara.Bifurcations in two-dimensional Hindmarsh-Rose type modelIntJBifurcatChaos,2007. 被引量:1
  • 7Pikovsky A S,Kurths J.Coherence resonance in a noise-driven excitable systemPhysical Review,1997. 被引量:1
  • 8Hodgkin AL,Huxley AF.A quantitative description of membrane current and its application to conduction and excitation in nerveJournal of Physics,1952. 被引量:1
  • 9Zhou S B,Li H,Zhu Z Z.Chaos control and synchronization in a fractional neuron network systemChaos Solitons Fractals,2008. 被引量:1
  • 10Y.Liu,Y.Xie,Y.M.Kang,N.Tan,J.Jiang.Dynamical Characteristics of the Fractional-Order FitzHugh-Nagumo Model NeuronAdvances in Cognitive Neurodynamics (II),2009. 被引量:1

二级参考文献7

  • 1PODLUBNY I.Fractional-order systems and -controllers [J]. IEEE Trans on Automatic Control, 1999,44 (1):208-214. 被引量:1
  • 2PODLUBNY I. Fractional Differential Equations [M].San Diego: Academic Press,1999:243-260. 被引量:1
  • 3MATIGNON D.Stability results for fractional differential equations with applications to control processing [C]∥ Proc of Computational Engineering in Systems and Application Multiconference. France: IMACS,IEEE-SMC (Systems,Man and Cybernetics),1996,2:963-968. 被引量:1
  • 4MATIGNON D,D'ANDR?A-NOVEL B.Some results on controllability and observability of finite-demensional fractional differential systems [C]∥ Computational Engineering in Systems and Application multiconference. France:IMACS,IEEE-SMC(Systems,Man and Cybernetics),1996,2:952-956. 被引量:1
  • 5OUSTALOUP A. La Command CRONE [M].Paris: Hermes Science,1991. 被引量:1
  • 6OUSTALOUP A.The great principles of CRONE control [C]∥ Systems Engineering in the Service of Humans,Int Conf on Systems,Man and Cybernetics. Paris:Le Touquet,1993,2:118-129. 被引量:1
  • 7陆庆乐,王绵森.工程数学--复变函数[M].第4版.北京:高等教育出版社,1996:172-177.(LU Qingle,WANG Miansen. Engineering Mathematics-Complex Function [M].4th Edition 4.Beijing: Advanced Education Press,1996:172-177.) 被引量:1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部