期刊文献+

加权Voronoi图重心在公共设施选址中应用的研究 被引量:3

Research on the Weighted Voronoi's Center of Gravity Used in the Site Selection of Public Facilities
下载PDF
导出
摘要 城市公共设施选址既要充分体现该设施的利用价值,又要减少和避免由于各设施的重复覆盖而造成的资源浪费.为此首先对普通Voronoi图和加权Voronoi图进行了介绍,然后利用层次分析法解决了拥有综合多因素影响的加权Voronoi图的权值确定问题.一般一个平面图形的重心通常被认为是该区域的平衡位置.所以对于每个公共设施的影响区域进行基于综合因素的加权Voronoi区域划分后只要确定出这个区域的重心位置即可确定该公共设施的最佳选址位置. In the process of site selection,we hope not only to realize the value of the facility,but also to reduce and avoid duplication of facilities due to the coverage of the resulting waste of resources.There fore,we first introduced the ordinary Voronoi diagram and the weighted Voronoi diagram,then we achieved the two voronoi diagram with discrete method.By using analytic hierarchy process,we determine the power value which the weighted Voronoi diagram has a comprehensive affect factors.A center of gravity of t...
出处 《河北建筑工程学院学报》 CAS 2010年第4期100-104,共5页 Journal of Hebei Institute of Architecture and Civil Engineering
关键词 计算几何 加权Voronoi图 层次分析法 重心 选址 computational geometry weighted Voronoi diagram analytic hierarchy process center of gravity site selection
  • 相关文献

参考文献2

二级参考文献6

  • 1[1]Sugihara K., Approximation of generalized Voronoi diagrauns by ordinary Voronoi diagrams [ J ]. Computer Vision, Graphics, and Image ProcessingGraphical Models and Image Processing, 1993,55:522 ~ 531. 被引量:1
  • 2[2]Takafumi Watanabe and Sadayuki Murashima, A method to construct a Voronoi diagram on 2-D digitized space O(1) computing time[J] .Faculty of Engineering, Kagoshirna University, Kagoshimashi, 1996, J79 - D - I (3):114 ~ 112. 被引量:1
  • 3[3]Kazuhiro Yamada and Kokichi Sugihara ,Approximation of Voronoi diagrams for figures and its improvement[J]. Department of Mathematical Engineering and Information Physics, Graduate School of Engineering, University of Yokyo,1996. 被引量:1
  • 4[4]Voronoi G. ,Nouvelles applications des parameters continues a la theorie des formes quadratiques; Deuxieme memoire: Recherches sur les parplleloedres primitives[J]. Math, 1908,134:198 ~ 287. 被引量:1
  • 5[5]Lee D. T. and Schachter B. J., Two algorithms for constructing a Delaunay triangulation [J]. International Journal of Computer and Information Sciences, 19o0,9:709 ~ 720. 被引量:1
  • 6[6]Ohya T. Iri M. and Murota K., Improvement of the incremental method for the Voronoi diagram with computational comparison of various algorithms[J].Joumal of the Operations Research Society of Japan, 1984,27:306 ~336. 被引量:1

共引文献8

同被引文献29

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部