摘要
本文对基于不同分布样本的两样本U-统计量,研究了在核函数有界或满足一定条件的非有界时其投影残差的指数收敛速度,得到了相当于独立和的类似结果.
The convergence rates of the projection residue of U-statistics in non-id.case are studied.When the kernel function is bounded or fulfills some more general condition,some exponentisl converfence rates are obtained.
关键词
投影残差
指数收敛速度
U统计量
统计量
样本
projection residue
exponential convergence rate
locally generalized Gaussain random variable.