期刊文献+

带弦的圈是协调图(英文)

Cycles with a Chord are Harmonious Graphs
下载PDF
导出
摘要 称具有e条边的简单图G为协调图,若存在由G的顶点集到模e的整数群Ze的一个单射h,使得导出映射h^*:h^*(uv)≡h(u)+h(v)(mod e)是一个由G的边集到Ze的双射,带弦的圈C′n是由含n个顶点的圈Cn上添一条连结两个不相邻顶点的边而得到的图。本文中证明了,除了n=6且弦端点在Cn上的距离为2的情况外,所有带弦的圈都是协调图。 A simple graph G with e edges is said a harmonious graph,if there exists an injection h from the vertices set of G to Z,,the group of integers modulo e,so that the induced function h* :k* (uv)=h(u)+A(v)(mod e) is a bijection from the the edges set of G to Z,. A cycle with a chord C'n is obtained from Cn,the cycle with n vertices,by adding one edge joining two nonadjacent vertices. In this paper ,it's proved that the all cycles with a chord are harmonious graphs except that n = 6 and the distance on Cn between the endpoints of the chord is 2.
作者 徐士达
出处 《应用数学》 CSCD 北大核心 1995年第1期31-37,共7页 Mathematica Applicata
关键词 协调标号 协调图 简单图 图论 Cycle Chord Harmonious labeling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部