摘要
设X,Y为Banach空间,f:X0→2Y(X0 X),D:Y0→、2Y(Y0=∪f(x)),对y∈Y0,D(y))均取锥值.本文讨论集值映照f(x)关于控制结构D(y)的优化问题,当目标函数和控制结构同时有扰动时优化解的稳定性.
Let X and Y be Banach spaces, f: X0→ 2Y(X0 X) and D: Y0→ 2Y (Y0 = ∪f(x) ) be the set-valued mappings; and let the mapping D(y) be conevalued for each y ∈ Y0. In this paper, we study the stability of the optimum solutionof an optimization problem for set-valued mapping f(x) with domination structureD(y) when both the objective function and the domination structure have perturbations simultaneously.
出处
《系统科学与数学》
CSCD
北大核心
1995年第2期138-145,共8页
Journal of Systems Science and Mathematical Sciences
关键词
优化解
稳定性
非线性规划
集值映象
目标函数
Set-valued mapping, domination structure, optimum solution, stability.