摘要
本文讨论一类一阶非线性泛函微分方程[P(t)(x(t)+cx(τ,(t)))']'+q(t)f(x(σ(t))=0解的振动性与渐适性。所得结论改进和推广了已知的一些结果。
In this paper, we consider the nonlinear functional differential equation:[p (t) (x (t) + cx(τ (t) ) ) ' ] ' + q (t)f(x(σ(t) ) ) = 0. Some nonoscillatory and oscillatory results are given. Our conclusions improve and generalize some Known results.
关键词
泛函微分方程
振动性
渐近性
非线性
Functional differential equation
Oscillation
Asymptotic property