期刊文献+

基于小波模极大值和Neyman-Pearson准则阈值的图像去噪 被引量:11

Image Denoising Based on Wavelet Modulus Maxima and Neyman-Pearson Principle Threshold
下载PDF
导出
摘要 首先给出了2维噪声的小波变换特性,分析图像小波变换模的极大值与小波分解级数j和李氏指数之间的关系,指出如何确定和保护图像的边缘;接着阐述了基于软、硬阈值的图像正交小波变换去噪法,然后提出一种基于Neym an-Pearson准则的小波阈值的确定,从而又提出了一种基于小波模极大值和Neym an-Pearson准则阈值的图像去噪方法,解决了图像去噪和保护图像边缘这个“两难”问题。针对期望图像叠加了不规则噪声的假设,对几种去噪方法做了定性比较,并给出了去噪性能的定量分析,仿真结果表明,此方法能提高去噪后图像的信噪比,使评价原图像与去噪后的图像近似程度的方差和相对熵为最小,同时能很好地保留原始图像的边缘信息。 Firstly, this paper gives the property of wavelet transform of two dimensional noise, analyzes the relationship of wavelet transform modulus maxima to different decomposed class j and Lipschitz exponent, and points out how to determine and protect image edges. Then it explains the orthogonal wavelet transform of denoising based on soft and hard threshold,and puts forward a denoising method based on the wavelet modulus maxima and Neyman-Pearson principle. The method finds the optimal trade off between image denoising and protecting image edges. Based on the assumption that the observed image is the sum of the expected image and irregular corruptive noise, the qualitative and quantitative performance of our image denoising method is compared with others. Simulation results show the proposed method can efficiently denoise, such as increasing Signal-to-Noise Ratio (SNR) , lowing Mean Square Error (MSE) and Relative Entropy (RE) , while preserving the details of the original image.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第8期964-969,共6页 Journal of Image and Graphics
关键词 小波阈值去噪 NEYMAN-PEARSON准则 小波模极大值 图像的边缘 wavelet threshold denoising, Neyman-Pearson principle, wavelet modulus maxima, image edge
  • 相关文献

参考文献12

  • 1Daubechies I. Ten lectures on wavelets [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992 : 1 - 56. 被引量:1
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation viawavelet shrinkage [J]. Biometrika, 1994,81 ( 3 ) :425 - 455. 被引量:1
  • 3Shark L K,Yu C. Denoising by optimal fuzzy thresholding in wavelet domain [J]. Electronics Letters, 2000,36 ( 6 ) :581 - 582. 被引量:1
  • 4Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise [J].IEEE Transactions on Image Processing, 1999,8( 7 ) :947 - 953. 被引量:1
  • 5Liu Juan, Moulin P. Image denoising based on scale-space mixture modeling of wavelet coefficients [A]. In: Proceedings of IEEE International Conference on Image Processing [C]. Kobe Japan,1999,386 - 390. 被引量:1
  • 6Scharf L L. Statistical Signal Processing: Detection, Estimation and Time Series Analysis [M]. New York: Addison-Wesley Publishing Company, 1991:104 - 178. 被引量:1
  • 7Meyer Y. Ondelettes et Operateurs [M]. Paris: Hermann Press,1990. 被引量:1
  • 8Mallat Stephane, Zhong Sifen. Characterization of signals from multiscales edges [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 ( 7 ) :710 - 732. 被引量:1
  • 9Mallat Stephane, Hwang Wei Ling. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992,38(2) :617 - 643. 被引量:1
  • 10Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage: Asymptopia? [J]. Journal Royal Statistical Society,1995, serial B ( 57 ) :301 - 369. 被引量:1

同被引文献123

引证文献11

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部