期刊文献+

C12A7-MgO催化剂上的生物油裂解制氢 被引量:8

Catalytic Conversion of Bio-oil to Hydrogen on the C12A7-MgO Catalyst
下载PDF
导出
摘要 Catalytic steam reforming of condensable vapors, i.e. bio-oil, derived from pyrolysis of biomass is an important process for hydrogen production, which is expected to form renewable and clean energy. The generation of hydrogen from bio-oil was investigated from 250 to 750 ℃ by a MgO mixed C12A7-O^-(C12A7-MgO) catalyst in a fixed-bed micro-reactor. The hydrogen yield on C12A7-MgO was about 44% at 750 ℃. It is found that both the catalytic activity and catalysis life are improved by doping MgO. The XRD results show that the C12A7 structure of the positively charged lattice framework remains in the C12A7-MgO catalyst. Catalytic steam reforming of condensable vapors, i.e. bio-oil, derived from pyrolysis of biomass is an important process for hydrogen production, which is expected to form renewable and clean energy. The generation of hydrogen from bio-oil was investigated from 250 to 750 ℃ by a MgO mixed C12A7-0^- (C12A7-MgO) catalyst in a fixed-bed micro-reactor. The hydrogen yield on C12A7-MgO was about 44% at 750 ℃. It is found that both the catalytic activity and catalysis life are improved by doping MgO. The XRD results show that the C12A7 structure of the positively charged lattice framework remains in the C12A7-MgO catalyst.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2005年第4期469-470,共2页 化学物理学报(英文)
基金 Projectsupportedbythe"BRPprogram"byChineseAcademyofScience
  • 相关文献

参考文献1

二级参考文献4

共引文献13

同被引文献169

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部