期刊文献+

欺骗免疫秘密共享 被引量:6

Construction of Cheating Immune Secret Sharing
下载PDF
导出
摘要 为抵抗通常的攻击,用于密码体制的函数应具有高的代数次数.基于Stinson的秘密共享模型,研究了无条件安全下的欺骗免疫秘密共享.利用级联满足一定条件的线性函数,构造了代数次数大于2的k-欺骗免疫秘密共享的定义函数,所给出的函数是相关免疫度为k的平衡函数,而且满足k-强扩散准则. Cheating immune secret sharing in the unconditionally secure case was investigated. Secret sharing is a k-cheating immune if any k cheaters are not better off than a participant which follows the protocol honestly, k-cheating immune secret sharing scheme under the unconditionally secure would be given. The obtained function of the secret sharing scheme is k-resilient and satisfies k-strengthened propagation criterion. Furthermore, its degree is high. So it has better cryptographic properties thanthat of the known results.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2005年第4期83-86,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60373059) 高等学校博士学科点专项基金项目(20040013007)
关键词 秘密共享 (强)扩散准则 相关免疫函数 弹性函数 secret sharing (strengthened) propagation criterion correlation immune functions resilient functions
  • 相关文献

参考文献8

  • 1温巧燕,杨义先.弹性函数的递归构造[J].北京邮电大学学报,2002,25(2):47-51. 被引量:10
  • 2Zhang X M, Pieprzyk J. Cheating immune secret sharing[A]. The Third International Conference on Information and Communication Security(ICICS) 2001 [ C]. 2001.144-149. 被引量:1
  • 3Pieprzyk J, Zhang X M. Constructions of cheating immune secret sharing[A]. Lecture Notes in Computer Science[C]. 2001. 226-243. 被引量:1
  • 4Zhang Jie, Chang Zuling, Wen Qiaoyan. Further results of cheating immune secret sharing I J]. The Journal of China Universities of Posts and Communications, 2004,11(4): 26-28. 被引量:1
  • 5Pieprzyk J, Zhang X M. Cheating prevention in secret sharing over GF ( p' ) [ A ]. INDOCRYPT 2001 [ C ].2001. 79-90. 被引量:1
  • 6Stinson D R. Cryptography: theory and practice [ M].CRC Press, 1995. 被引量:1
  • 7Zhang X M, Zheng Y L. Cryptographically resilient functions[J]. IEEE Trans Inform Theory, 1997, 43:1740-1747. 被引量:1
  • 8温巧燕,杨义先.弹性函数的计数[J].北京邮电大学学报,2002,25(4):21-25. 被引量:5

二级参考文献14

  • 1[1]Chor B,Goldreich O,astad J H°,Friedman J,Rudich S,Smolensky R.The bit extraction problem or t-resilient functions[A].in Proc.26th IEEE Symp.Foundations of Computer Science[C].1985,26:396-407. 被引量:1
  • 2[2]Bennett C H,Brassard G,Robert J M.Privacy amplification by public discussion[J].SIAM J.Comput,1988,17(2):210-229. 被引量:1
  • 3[3]Rueppel R A.Analysis and design of stream ciphers[M].Berlin Germany: Springer-verlag,1996. 被引量:1
  • 4[4]Siegenthaler.Correlation immunity of nonlinear combining functions for cryptographic[J].IEEE.Trans.Inform.Theory,1984,IT-30 sept,776-779. 被引量:1
  • 5[5]Jurgen Bierbrauer,Gopalakrishnan K,Stinson D R.Bounds for resilient functions and orthogonal arrays[A].Advance in Cryptology-CRYPTO'94,Lecture Notes in Computer Science[C].Springer-verlag,Berlin,Heidelberg,New York: 1994,839:247-256. 被引量:1
  • 6[6]Gopalakrishnan K,Hoffman D G,Stinson D R.A note on a conjecture concerning symmetric resilient functions[C].Inform Processing Lett.,1993,47: 139-143. 被引量:1
  • 7[7]Stinson D R,Massey J L.A infinite class of counterexamples to a conjecture concerning nonlinear resilient functions[J].Cryptology,1995,8(3):167-173. 被引量:1
  • 8[8]ZHANG Xiao-mo,ZHANG Yu-liang.Cryptographically resilient functions[J].IEEE Trans.Inform.Theory,1997,43:1 740-1 747. 被引量:1
  • 9[9]ZHANG Xiao-mo,ZHANG Yu-liang.On nonlinear resilient functions[A].In Advance in cryptology-Eurocrypt'95[C].Berlin: spring-verlag,1996,274-290. 被引量:1
  • 10[10]CHEN Lu-sheng,FU Fang-wei.On the constructions of new resilient functions from old ones[J].IEEE Trans Inform Theory,1999,45(6):2 077-2 082. 被引量:1

共引文献11

同被引文献29

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部