摘要
将阻尼合金视为粘弹性材料,利用五参量本构关系来描述阻尼合金材料的应力应变关系。在试验的基础上, 利用优化算法拟合出本构关系式中的五个参量。导出了以五参量表示阻尼和刚度特性的单元运动微分方程。为便于计算,将包含卷积运算的微分方程转换成一个四阶微分方程,进而装配出含有阻尼合金构件的弹性连杆机构的系统动力学方程。利用状态空间法对导出的高阶时变微分方程组进行了数值求解。计算实例结果表明所提模型是正确、有效的。
Using viscoelastic theory, a structural damping model with five control parameters is introduced as the constitutive equation for damping alloy. Based on the experimental data evaluation, the five parameters are fitted by using an optimization algorithm. Dynamic equations of beam element of damping alloy are derived with above five parameters representing the dissipation and stiffness characteristics. For the convenience of computation, the established dynamic equations containing convolution integration are changed into four-order differential equations. Further, the system dynamic equation of the elastic linkage mechanism containing damping alloy parts is assembled according to the kineto-elastodynamics theory. Finally, the state space method is employed to solve the established high order differential equations with time-varying coefficients. An example is given to show that the proposed model is accurate and effective.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2005年第8期136-139,共4页
Journal of Mechanical Engineering
基金
国家自然科学基金(50075068)陕西省科学技术研究发展计划(2004K06-G23)西安市科技攻关计划(GG05026)资助项目。
关键词
阻尼合金
五参量
时域本构
弹性连杆机构
Damping alloy Five parameters Time-domain constitution Elastic linkage mechanism