摘要
其中X^0为一各边平行于坐标轴的立方体(以下将这类立方体简称为胞腔),X^0的最大边长度称为网径,记为W(X^0).在本文中,X(?)X^0表示任一胞腔,f(X)={f(x):x∈X}表示f在X上的值域,f在X^0上的整体极小值记为f~*,f在X^0上全部整体极小点集合记为M.以下恒假定M仅由有限个孤立点组成,且M中所有点含于X^O内部.于是,(?)x~*∈M。
Based on a simple computationally verifiable necessity test for existence of a global minimizer in any cell, an efficient algorithm is developed for finding all global minimizers of a function in multiple variables. Both theoretical analysis and numerical simulations demonstrate that the algorithm is very efficient and reliable. It is particularly superior to those algorithms proposed by Z.Shen and Y.Zhu [15], E.Hansen [8] [9] and Shubert [14].
出处
《计算数学》
CSCD
北大核心
1995年第4期443-455,共13页
Mathematica Numerica Sinica
基金
国家自然科学基金资助项目
国家教委博士点基金资助课题