期刊文献+

多元正态的两个均匀性检验(英文)

Two Uniform Tests for Detecting Non-multinormality
下载PDF
导出
摘要 本文提出两个均匀性统计量用于检验多元正态性.该检验建立在多元正态分布的一个特征性质基础上.模拟研究和实例分析显示该均匀性统计量可以帮助解释来自已有正态性检验统计量的结论. Based on a characterization for the multivariate normal distribution, we propose two uniform tests for detecting non-multinormality. Monte Carlo study and an analysis of a real data set show that the two uniform tests can help explain conclusions obtained from other existing tests of normality.
出处 《应用概率统计》 CSCD 北大核心 2005年第3期267-277,共11页 Chinese Journal of Applied Probability and Statistics
基金 This work was supported by a UNH 2003 Summer Faculty Fellowship & Research Award.
关键词 多元正态性 模拟研究 球分布 T-分布 均匀性检验 Multinormality, Monte Carlo study, spherical distribution, t-distribution, uniform test.
  • 相关文献

参考文献19

  • 1Csorgo, S., Testing for normality in arbitrary dimension, Ann. Statist.,14(1986), 706-723. 被引量:1
  • 2Fang, K.T., Kotz, S. and Ng, K.W., Symmetric Multivariate and Related Distributions, Chapman and Hall, London and New York, 1990. 被引量:1
  • 3Fang, K.T. aad Wang, Y., Number-theoretic Methods in Statistics, Chapman and Hall, London and New York, 1994. 被引量:1
  • 4Henze, N. and Wagner, T., A new approach to the BHEP tests for multivm'iate normality, J. Multivar.Anal., 62(1997), 1-23. 被引量:1
  • 5Liang, J. and Bentler, P.M., A t-distribution plot to detect non-multinormality, Comput. Statist.& Data Anal., 30(1999), 31-44. 被引量:1
  • 6Liang, J., Li, R., Fang, H. and Fang, K.T., Testing multinormality based on low-dimensional projection, J. Statist. Plann. & Infer., 86(2000), 129-141. 被引量:1
  • 7Mm'dia, K.V., Measures of multivariate skewness and kurtosis with applications, Biometrika,57(1970),519-530. 被引量:1
  • 8Mardia, K.V., Tests of univariate and multivariate normality, In: P.R. Krishnaiah (Ed.), Handbook of Statistics, Vol. 1, North-Holland Publishing Company, Amsterdam, 279-320,1980. 被引量:1
  • 9Miller, F.L.Jr. and Quesenberry, C.P., Power studies of tests for uniformity, II, Commun. Statist.-Simul. Comput. (B), 8(3)(1979), 271-290. 被引量:1
  • 10Neyman, J., “Smooth” test for goodness of fit, J. Amer. Statist. Assoc., 20(1937), 149-199. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部