摘要
本文讨论了真Engel子代数的伴随表示均可三角化的李代数(E.t.李代数)的结构,证明了不可解E.t.李代数一定位于一单E.t.李代数的微分代数与内微分代数之间,在Winter关于单E.t.李代数的猜测成立的前提下,得到了E.t.李代数是中心化子幂零代数的条件。
The structure of the Lie algebras of which the adjoint representations of proper Engel subal-gebras are all triansulable is diseussed (such algebras are called to be E. t. ). It is proved that, for anonsolvable E. t. Lie alsebra, the solvable radical is nil, and every semisimple E. t. Lie algebra is lo-cated in the inteval determined by the set of all derivations and that of all inner derivations of a simpleE. t. Lie algebra. Assuming that Winter's conjecture on the simple E. t. Lie algebras turns out to becentralizer nilpotent is obtained.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1995年第3期92-95,共4页
Journal of Southeast University:Natural Science Edition