摘要
本文首先引入了Banach空间X的K-WM性质,它是B.B.Panda和O.P.Kapoor在[1]中引入的WM性质的推广。然后证明了:若X是CL-KR的,则S有(S)性质;若X有K-WM性质,X有(S)性质,则X是CL-KR的;若X是CL-KR的,M是X的自反子空间,则X/M是CL-KR的;若X有K-WM性质,M是x的自反子空间,则X/M有K-WM性质。此外,本文还指出:(S)性质和CL-KR不具有对偶性质。
In this paper it is provcd if X is CL-KR,then X has the property(S);if Xhas the property k-WM,X has the property(S),then X is CL-KR;if X is CL-KR,M is refiexive subspace of X,then X/M is CL-KR and if X has the property K-WM,Mis refiexive subspace of X,then X/M has the property K-WM.The property(S)and CL-KR has not the dual property.