摘要
MST(最小生成树MinimumSpanningTree之略)多边更新(updating)问题定义如下:给定一个赋权图G(V,E)和G的一棵最小生成树T(V,ET),其中|V|=n,ET是树边集合,(1)给G添加K条新边,或者(2)在图G上改变K条边的权后重新为G寻找一棵最小生成树,1≤K<n.本文基于SIMDCREWPRAM共享存贮模型,运用“进-退”策略,并把这一特殊手段与已有的平行算法组合起来,为一类稀疏图(|E—ET|=O(K))找到了一种有效的MST多边更新算法.该算法需要O(lognlogK)时间和O(max{n,uK/lognlogK})处理机.
The multiple edge updating problem for a minimum spanning tree (MST) isdefined as follows: Given a weighted graph G (V, E) and its MST T (V, ET),where |V|=n, ET is the set of tree edges, recompute a new minimum spanningtree after (1) adding K new edges, or (2) changing the weights of K edges onthe graph G, where 1≤K<n. Based on a SIMD CREW PRAM model, an efficient algorithm for multiple edge updates of MST on a sparse graph (|E-ET|= O(K)) is found with 'advance-and-retreat' strategy and combining this specialway with some existent parallel algorithms. The algorithm requires O(log n logK) time and O(max{n,nK/log n log K} ) processors.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
1995年第1期98-104,共7页
Journal of Shanghai University:Natural Science Edition
基金
国家教委科研基金
上海市科委基金