摘要
利用求解雷诺平均的N-S方程的数值模拟方法,对一种新型的推力矢量喷管———基于次流喷射控制的二维收缩-扩张喷管(2DCD)———的推力矢量性能进行了研究。根据数值模拟结果分析了外流马赫数、喷管压强比和次流总压与主流总压之比对矢量偏角的影响。
The new type of two-dimensional, convergent-divergent(2DCD) nozzle with fluidic injection for pitching vector control was analyzed by the computation of Reynolds averaging N-S equations. It is advanced in time with an implicit approximate-factorization method to obtain the steady solutions of the N-S equations. The computational results show that the vectoring angle is dependent on the freestream Mach number, nozzle pressure ratio(NPR) and secondary pressure ratio(SPR). If the other conditions kept the same and only the freestream Mach number increased, we can see that with the increasing freestream Mach number the vectoring angle will be decreased. The vectoring angle decreases while the nozzle pressure ratio increases. The vectoring angle decreases about 5.5 degrees when the secondary pressure ratio increases from 0.6 to 1.0.
出处
《航空计算技术》
2005年第2期50-53,共4页
Aeronautical Computing Technique
关键词
二维收缩-扩张喷管
N—S方程
射流推力矢量
<Keyword>two-dimensional convergent-divergent nozzle
N-S equations
fluidic vectoring thrust