期刊文献+

基于免疫聚类的入侵检测研究 被引量:1

Intrusion Detection Based on Immune Clustering
下载PDF
导出
摘要 现代网络中用户的行为以及网络结构不断发生变化,因而需要大量已标记的样本数据,用以动态更新入侵检测模式。但是通过手工方式标记学习数据集非常耗时,因此基于标记数据集的检测模型就越来越难以满足实际应用的需要。本文提出了一种使用无标记数据集的基于免疫聚类的异常检测算法,该方法可直接用于检测入侵行为,也可作为建立入侵检测模型的中间步骤,用来提高入侵检测系统的适应性和部署效率。 Traditional intrusion detection methods lack extensibility in face of changing network configurations as well as adaptability in face of unknown attack types. Meanwhile, current machine-learning algorithms need labeled data for training first, so they are computational expensive and somethaes misled by artificial data. In this paper, a new detection algorithm, the Intrusion Detection Based on Immune Clustering algorithm, is proposed. It can automatically establish clusters and detect intruders by compute the outlier factor of each data item. Computer simulations show that this algorithm is effective for intrusion detection.
出处 《计算机科学》 CSCD 北大核心 2005年第7期95-98,共4页 Computer Science
  • 相关文献

参考文献10

  • 1Heady R, et al. The architecture of a network level intrusion detection system: [Technical Report CS90-20]. New Mexico: University of New Mexico,Aug. 1990 被引量:1
  • 2Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemometrics and Intelligent Laboratory Systems ,2000,52: 87 ~ 104 被引量:1
  • 3Kollios G. Efficient Biased Sampling for Approximate Clustering and Outlier Detection in Large Data Sets. IEEE Transactions on knowledge and data engineering, 2003,15 (5) 被引量:1
  • 4Hu T,Sung S Y. Detecting pattern-based outliers. Pattern Recognition Letters, 2003,24: 3059 ~ 3068 被引量:1
  • 5Ester M, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In:Proc. of 2nd Intl.Conf. on Knowledge Discovery and Data Mining (KDD-96) 被引量:1
  • 6Knorr E M, Raymond. Algorithms for Mining Distance-Based Outliers in Large Datasets. In: Proc. of 24th VLDB conf, New York ,USA,1998 被引量:1
  • 7He Z, et al. Discovering cluster- based local outliers. Pattern Recognition Letters, 2003,24:1641~ 1650 被引量:1
  • 8钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24
  • 9Kim D J,Park Y W,Park D J. A novel validity index for determination of the optimal number of clusters. IEICE Transactions on Information and Systems ,vol. E84-D,2001 (2) :281~285 被引量:1
  • 10KDD99cupdataset. http:∥kdd. ics. uci. edu /databases/kddcup99/kddcup1999. html,1999 被引量:1

二级参考文献9

  • 1Jawei Han,Micheline Kamber.Data Mining:Concepts and Techniques[M].San Fransisco:Morgan Kaufmann,2000. 被引量:1
  • 2Karkkainen Franti.Dynamic local search for clustering with unknown number of clusters[A].IEEE 16th International Conference on Pattern Recognition[C].Quebec Canada:IEEE,2002(2).240-243. 被引量:1
  • 3Hong-bing XU.Fuzzy tabu search method for the clustering problem[A].IEEE Proceeding of the first International Conference on Machine Learning and Cyberneteics[C].Beijing:IEEE,2002(5).876-880. 被引量:1
  • 4Hall L O Ozyurt.Clustering with a genetically optimized approach[J].IEEE Transactions on Evolutionary Computation,1999,7(3):103-112. 被引量:1
  • 5Krovi R.Genetic algorithms for clustering:a preliminary investigation.System Sciences[A].IEEE Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences[C].Hawaii:IEEE,1992(4).540-544. 被引量:1
  • 6Timmis.Artificial immune system:an novel data analysis technique inspired by immune network theory[D].Wales:Wales university,2001. 被引量:1
  • 7Leandro Nunes de Castro.An evolutionary immune network for data clustering[A].Proc of the IEEE SBRN (Brazilian Symposium on Artificial Neural Networks)[C].Brazilian:IEEE,2000.84-89. 被引量:1
  • 8Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man and Cybernetics,1998,28(Part B,Issue:3):301-315. 被引量:1
  • 9行小帅,潘进,焦李成.基于免疫规划的K-means聚类算法[J].计算机学报,2003,26(5):605-610. 被引量:81

共引文献23

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部