期刊文献+

基于RBF神经网络的制丝生产线仿真模型 被引量:3

The Simulative Model of the Tobacco Strips Product Line Based on RBF NN
下载PDF
导出
摘要 烟草生产企业的制丝生产线是烟草生产企业最重要的环节,也是一个复杂的非线性系统,制丝生产线的好坏直接决定了卷烟质量。为了解决制丝生产线参数调节问题、提高生产质量,需要对制丝生产线进行仿真研究。现今在国内还没有对其进行过建模分析。文章结合制丝生产线的实际情况,提出了引入反馈和延时的RBF神经网络网络模型制丝生产线仿真模型,并以制丝生产线中的加料机模型进行仿真,取得了良好的效果。 The tobacco strips product line is the most important workshop in tobacco enterprise,It is also a very complicated non-linear system,the quality of tobacco is directly influenced by the condition of tobacco strips product line.In order to solve the problem of parameter adjusting and improving the quality of tobacco,it needs to analyze the tobacco strips product line by simulative model.There is no analysis to tobacco strips product line by model inland.This paper brings out a tobacco strips product line simulative model based on RBF neural network with feed and time delay.It's use the model of the seasoning machine to simulate,and works well.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第21期230-232,共3页 Computer Engineering and Applications
关键词 制丝生产 RBF神经网络 非线性系统 tobacco strips produce,RBF neural network,non-linear system
  • 相关文献

参考文献8

  • 1石海健,魏衡华,薛美盛,孙德敏.烟叶制丝过程先进控制站的设计与开发[J].自动化与仪表,2001,16(5):28-31. 被引量:5
  • 2Chunyu He,Demin Sun,Meisheng Xue et al.The advanced control and optimization in tobacco strips processing Intelligent Control and Automation [C ].In: Proceedings of the 3rd World Congress on, 2000: 3549~3552 被引量:1
  • 3S Reynold Chu, Rahmat Shoureshi,Manoel Tenorio. Neural networks for system identification [ J ].Control Systems Magazine, IEEE, 1990; 10 ( 3 ):31~35 被引量:1
  • 4J Barry Gomm,Ding Li Yu.Selecting radial basis function network centers with recursive orthogonal least squares training[J].IEEE Trans,Neural Networks, 2000; 11 (12): 306~314 被引量:1
  • 5金秀章,张立峰,苏杰.应用数据融合改善压力传感器的静态特性[J].华北电力大学学报(自然科学版),2003,30(2):64-67. 被引量:5
  • 6Sutanto E L et al. Mean-tracking clustering algorithm for radial basis function centre selection[J].Int J Control,1997;67(6):961~977 被引量:1
  • 7Moody J E,Darken C.Fast learning in networks of locally tuned processing units[J].Neural Computation,1989;1(2):281~294 被引量:1
  • 8Chen S,Billings SA.Neural networks for nonlinear dynamic system modeling and identification[J].Int J Control, 1992;56(2) :319~346 被引量:1

二级参考文献4

共引文献8

同被引文献4

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部