期刊文献+

二阶拟线性微分方程组边值问题的三个正解

Three Positive Solutions for Second Order Quasilinear Differential Equation System of Boundary Value Problems
下载PDF
导出
摘要 利用五个泛函的不动点定理,讨论了二阶拟线性微分方程组边值问题的至少三个正解的存在性。 Using the five functionals fixed point theorem, the existence at least three positive solutions for the second order quasilinear differential equation system is studied.
出处 《科学技术与工程》 2005年第15期1044-1047,共4页 Science Technology and Engineering
基金 国家自然科学基金(10471075)国家自然科学基金数学天元基金(A0324616)资助
关键词 拟线性微分方程组 五个泛函的不动点定理 正解 quasilinear differential equation system five functionals fixed point theorem positive solution
  • 相关文献

参考文献4

  • 1高英,郭彦平,葛渭高.二阶拟线性微分方程组边值问题的三个对称正解[J].系统科学与数学,2004,24(4):513-519. 被引量:4
  • 2[2]Zhan Bingbai, Zhang Jigui, Ge Weigao. Multiple positive solutions for some p-Laplacian boundary value problems. J Math Anal Appl,2004,300 : 477-490 被引量:1
  • 3[3]Zhang Bingbai, Ge Weigao, Wang Yifu. Multiplicity results for some second-order four-point boundary value problems. Nonlinear Analysis, 2005 ;60:491-500 被引量:1
  • 4[4]Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc Amer Math Soc, 1997 ; 125 : 2275-2283 被引量:1

二级参考文献7

  • 1Fink A M, Gatica J A. Positive solutions of second order systems of boundary value problems. J.Math. Anal. Appl., 1993, 180: 93-108. 被引量:1
  • 2Ma Ruyun. Existence positive radial solutions for elliptic systems. J. Math. Anal. Appl., 1996,201: 375-386. 被引量:1
  • 3Ma Ruyun. Multiple nonnegative solutions of second order systems of boundary value problems.Nonlinear Analysis, 2000, 42: 1003-1010. 被引量:1
  • 4Avery R I and Henderson J. Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett., 2000, 13: 1-7. 被引量:1
  • 5Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer.Math. Soc., 1997, 125: 2275-2283. 被引量:1
  • 6Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer.Math. Soc., 1997, 125: 2275-2283. 被引量:1
  • 7Guo D and Lakshmikantham V. Nonlinear Problems in Abstract Cones. San Diego: Academic Press, 1988. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部