期刊文献+

一种基于峰度的盲源分离算法研究 被引量:1

An Algorithm of Blind Signal Separation Based on Kurtosis
下载PDF
导出
摘要 盲源分离(BSS)问题是在缺少先验知识的情况下,从接收到的观测信号中恢复统计独立的源信号。独立分量分析(ICA)方法把多维随机矢量转换为尽可能统计独立的分量,是现代解决盲源分离问题最主要的方法之一。本文给出了一种基于峰度的盲源分离算法,与用Comon的方法求解Givens矩阵相比,结构清晰、实现简单,而且几乎没有对源信号的概率密度函数做任何假设,可以对几乎所有概率密度的源信号进行分离,还借鉴了Comon的成对处理原则,把算法推广到了解决一般的盲源分离问题。仿真证明了该算法的有效性。 The Blind Source Separation (BSS) problem consists of recovery sources from the observed signals without adequate a prior knowledge.Independent Component Analysis(ICA)is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible, and it is one of the most important approaches to the BSS problem. An algorithm for BSS based on kurtosis is presented in this paper, which is simpler and easier to implement in solving Givens Matrix compared with Comon′s. As no other assumption of the Probability Density Function (PDF) is made, the algorithm can be used for virtually any PDF. It is also extended to the general BSS problems in light of Comon′s pair wise principle. The simulation justifies its effectiveness.
出处 《现代电子技术》 2005年第14期103-104,107,共3页 Modern Electronics Technique
关键词 盲源分离 ICA 峰度 Givens矩阵 Blind Source Separation (BSS) ICA kurtosis Givens matrix
  • 相关文献

参考文献4

  • 1Pierre Comon.Independent Component Analysis, A New Concept [J].IEEE.Trans.Signal Processing,Special Issue on High-Odor Statisti cs.1994,36(3):287-314. 被引量:1
  • 2邱天爽等编著..统计信号处理 非高斯信号处理及其应用[M].北京:电子工业出版社,2004:246.
  • 3Jean-Francois Cardoso.IEEE Blind Signal Separation:S tatisical Principles[J]. Proceedings of the IEEE,1998,86(10). 被引量:1
  • 4Cao Xiren, Liu Rueywen.General Approach to Blind Source Sep aration[J].IEEE Transactions on Signal Processing,1996,44(3). 被引量:1

同被引文献10

  • 1Comon P. Independent Component Analysis, A New Concept [J].Signal Processing, 1994,36(3) : 287 - 314 被引量:1
  • 2Bell A J,Sejmowski T J. An Information- maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation,1995,7(6):1 129- 1 159. 被引量:1
  • 3Lee T W, Girolam M, Sejnowski T J, et al. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources[J]. Neural Computation, 1999 ,11 (2) : 417 - 441. 被引量:1
  • 4Hyvarinen A,Lja E. A Fast Fixed- point Algorithm for Independent Component Analysis [J]. Neural Computation, 1997,9(7):1 483-1 492. 被引量:1
  • 5Hyvarinen A. Survey on Independent Component Analysis [J]. Neural Computing Surveys, 1999,2 : 94 - 128. 被引量:1
  • 6Ddonoho D L. De - noising by Soft - thresholding[J]. IEEE Trans. Information Theory, 1995,41 (3) : 613. 被引量:1
  • 7Antonini M,Barlaud M,Mathieu P,et al. Image Coding Using Wavelet Transform[J]. Trans. on Signal Processing, 1997,45(7):1 712-1 725. 被引量:1
  • 8Andrzej Cichocki, Shun- ichi Amari.自适应盲信号与图像处理[M].吴国正,唐劲松,章林柯,等译.北京:电子工业出版社,2004. 被引量:1
  • 9Amari S, Chen T P, Cichocki A. Stability Analysis of Learning Algorithms for Blind Source Separation. Neural Networks,1997,10(8) :1 345- 1 351. 被引量:1
  • 10张继武,郑崇勋,耿中行.用奇异性检测技术提取诱发电位[J].中国生物医学工程学报,1999,18(3):295-303. 被引量:13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部