期刊文献+

基于神经网络的模板匹配方法求正常星系红移 被引量:7

Using Neural Networks Based Template Matching Method to Obtain Redshifts of Normal Galaxies
下载PDF
导出
摘要 星系通常分为正常星系(NG)与活动星系(AG)两类。文章提出了一种自动获取NG红移的快速有效方法:(1)由NG模板根据红移范围Ⅰ:0 0~0 3与Ⅱ:0 3~0 5模拟得到两类星系样本,进行PCA变换获得样本特征向量;(2 )利用概率神经网络设计两类样本特征向量的Bayes分类器;(3)对于实际NG光谱数据,利用Bayes分类器进行分类确定其红移的范围,然后在此范围内进行模板匹配得到红移的准确值。与在整个红移范围内的模板匹配方法相比,此方法不但节省了5 0 %的模板匹配运算量,而且还大大提高了红移值测量的精度。文章研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。 Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0. 0-0. 3, the other of 0. 3-0. 5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第6期996-1001,共6页 Spectroscopy and Spectral Analysis
基金 国家"863"项目计划(2003AA133060) 国家自然科学基金(60202013)资助项目
关键词 正常星系 主分量分析 概率神经网络 红移分类 模板匹配 normal galaxy principal component analysis(PCA) probabilistic neural networks classification of redshifts template matching
  • 相关文献

参考文献23

  • 1John Tonry, Marc Davis. Astronomical Journal, 1979, 84: 1511. 被引量:1
  • 2Karl Glazebrook, Alison R Offer, Kathryn Deeley. Astronomical Journal, 1998, 492: 98. 被引量:1
  • 3邱波,胡占义,赵永恒.一种快速求红移和证认谱线的新方法——伪三角法[J].光谱学与光谱分析,2002,22(4):695-698. 被引量:6
  • 4LUOA-li(罗阿理).[D].National Astronomical Observatories, Chinese Acade,2001. 被引量:1
  • 5Anne L Kinney, Daniela Calzetti, et al. Astrophysical Journal, 1996, 467: 38. 被引量:1
  • 6BIANZhao-qi ZHANGXue-gong(边肇祺 张学工).Pattern Recognition(模式识别)[M].Beijing: Tsinghua University Press(北京: 清华大学,1999.212. 被引量:1
  • 7Storrie-Lombardi M C, Irwin M J, Hippel T von, et al. Vistas in Astronomy, 1994, 38(3): 331. 被引量:1
  • 8Coryn A L Bailer-Jones, Mike Irwin, Hippel Ted von. Monthly Notices of the Royal Astronomical Society, 1998, 298(2): 361. 被引量:1
  • 9Connolly A J, Szalay A S. Astronomical Journal, 1995, 110(3): 1071. 被引量:1
  • 10Simon Folkes, Shai Ronen, et al. Monthly Notices of the Royal Astronomical Society, 1999, 308(2): 459. 被引量:1

二级参考文献12

  • 1黄凌云.硕士论文[M].中科院自动化所,2000.. 被引量:1
  • 2吴永东.博士论文[M].中科院自动化所,1997.. 被引量:1
  • 3[1]Robert A M,Steven N S.Encyclopedia of Astronomy and Astrophysics, San Diego: Academic Press, 1989, 571. 被引量:1
  • 4[3]John Tonry,Marc Davis.The Astronomica Journal,1979,58(10):1511. 被引量:1
  • 5[4]Karl Glazebrook,Alison R Offer,Kathryn Deeley.Astrophysical Journal,1998,492(1):98. 被引量:1
  • 6[6]Turk M A,Pentland A D.Face Recognition Using Eigenface, Proc. of Computer Vision and Pattern Recognition, Hawaii, June, 1991, 586. 被引量:1
  • 7[7]Ho C T,Chen L H.Pattern Recognition. 1995,28(1):117. 被引量:1
  • 8[8]Davies E R.Pattern Recognition Letters, 1986,4(3):185. 被引量:1
  • 9[9]Princen J,Illingworth J,Kittler J.Journal of Mathematical Imaging and Vision, 1992,1(2):153. 被引量:1
  • 10[10]Duda R O,Hart P E.Communications of the ACM, 1972,15(1):11. 被引量:1

共引文献12

同被引文献85

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部