摘要
星系通常分为正常星系(NG)与活动星系(AG)两类。文章提出了一种自动获取NG红移的快速有效方法:(1)由NG模板根据红移范围Ⅰ:0 0~0 3与Ⅱ:0 3~0 5模拟得到两类星系样本,进行PCA变换获得样本特征向量;(2 )利用概率神经网络设计两类样本特征向量的Bayes分类器;(3)对于实际NG光谱数据,利用Bayes分类器进行分类确定其红移的范围,然后在此范围内进行模板匹配得到红移的准确值。与在整个红移范围内的模板匹配方法相比,此方法不但节省了5 0 %的模板匹配运算量,而且还大大提高了红移值测量的精度。文章研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。
Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0. 0-0. 3, the other of 0. 3-0. 5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2005年第6期996-1001,共6页
Spectroscopy and Spectral Analysis
基金
国家"863"项目计划(2003AA133060)
国家自然科学基金(60202013)资助项目
关键词
正常星系
主分量分析
概率神经网络
红移分类
模板匹配
normal galaxy
principal component analysis(PCA)
probabilistic neural networks
classification of redshifts
template matching