期刊文献+

Snake模型与深度凹陷区域的分割 被引量:16

Research on Boundary Concavities Segmentation via Snake Models
下载PDF
导出
摘要 在基于Snake模型的图像分割中,深度凹陷区域的分割是一个难点.尽管GVFSnake模型极大地改善了这个问题,但它需要事先求解一个偏微分方程组,增大了计算量;同时,GVFSnake模型在初始化时还存在一个“临界点”问题.探讨了深度凹陷区域的分割,用离散轮廓上顺序3点所成三角形内切圆圆心来定义离散轮廓的曲率,该曲率既能反映轮廓的弯曲程度,又具有合理的方向.基于该曲率定义了曲率外力项,构造了基于Snake模型的两阶段算法,先采用传统Snake模型使离散轮廓逼近目标边缘,然后在曲率外力的作用下使离散轮廓进入目标的凹陷区.曲率外力项的引入能较好地解决深度凹陷区域的分割问题,也可以扩展该外力项来扩大Snake模型的捕捉范围.实验结果表明该方法是有效的. Snake models are extensively used from its debut in image processing and motion tracking, but its poor convergence on concave boundary is a handicap for object location. Although, the GVF Snake model shows high performance for this problem, but it suffers from costly computation by virtual of PDE's and another so-called critical point problem for the initial contour selection. In order to improve the performance of the traditional Snake model for concavity segmentation, a new external force based on the local curvature of the discrete contour and a two-stage Snake-based algorithm are proposed. The local curvature of the discrete contour, which characterizes the bending of a contour associated with a direction, is defined using the center of the inscribed circle of the triangle derived from three consecutive contour nodes. The first stage of the new method is a traditional Snake, and in the second stage the new force would drive the contour into the concave region. This new force can also be generalized to enlarge the capture range of the Snake model. In this case, it can be considered as a generalization of the balloon force. In order to overcome the difficulty of determining the magnitude, the magnitude is set to be small and the gradient-based force is first used as resistance; when the contour is converged, the gradient-based force swerves to attract the contour. Generalized in this way, the capture range is enlarged and there is no critical point problem. The experimental results validate the performance of this method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第7期1179-1184,共6页 Journal of Computer Research and Development
基金 香港特别行政区政府研究资助局项目(CUHK418001E CUHK100C)
关键词 SNAKE模型 GVF SNAKE模型 深度凹陷分割 Snake models GVF Snake model concavity segmentation
  • 相关文献

参考文献12

  • 1M. Kass, A. Witkin, D. Terzopoulos. Snake: Active contour models. International Journal Computer Vision, 1988, 1(4): 321~331 被引量:1
  • 2L.D. Cohen, I. Cohen. Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Trans.PAMI, 1993, 15(11): 1131~1147 被引量:1
  • 3C. Xu, J. L. Prince. Snakes, Shapes and gradient vector flow.IEEE Trans. Image Processing, 1998, 7 (3): 359~ 369 被引量:1
  • 4S. Lobregt, M. A. Viergever. A discrete dynamic contour model. IEEE Trans. Medical Imaging, 1995, 14(1): 12~24 被引量:1
  • 5李军,周敬利,余胜生,陈加忠,何小诚.基于块运动矢量加权的Snakes模型及在序列图像分割中的应用[J].计算机研究与发展,2003,40(2):277-282. 被引量:3
  • 6H.W. Park, T. Sehoepflin, Y. Kim. Active contour model with gradient directional information: Directional Snake. IEEE Trans.Circuits and Systems for Video Technology, 2001, 11(2): 252~256 被引量:1
  • 7N. Paragios, O. Mellina-Gottardo, V. Ramesh. Gradient vector flow fast geometric active contours. IEEE Trans. PAMI, 2004,26(3): 402~407 被引量:1
  • 8N. Ray, S. T. Acton, T. Altes, et al. Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation. IEEE Trans. Medical Imaging, 2003, 22(2):189~ 199 被引量:1
  • 9T. Pavlidis, Y. Liow. Integrating region growing and edge detection. IEEE Trans. PAMI, 1990, 12(3): 225~233 被引量:1
  • 10H. Delingette, J. Montagnat. Shape and topology constraints on parametric active contours. Computer Vision and Image Understanding, 2001, 83(2): 140~171 被引量:1

二级参考文献11

  • 1M Kass, A Witkin, D Terzopoulos. Snakes: Active contourmodels. International Journal of Computer Vision, 1987, 1(4): 321~331 被引量:1
  • 2N Paragios, O Mellina-Gottardo, V Ramesh. Gradient vector flow fast geodesic active contours. IEEE Int'l Conf in Computer Vision, 2001 被引量:1
  • 3P Brigger, J Hoeg, M Unser. B-spline snakes: A flexible tool for parametric contour detection. IEEE Trans on Image Processing, 2000, 9(9): 1484~1496 被引量:1
  • 4H Park, T Schoepflin, Y Kim. Active contour model with gradient directional information: Directional snake. IEEE Trans on Circuits And Systems for Video Technology, 2001, 11(2): 252~256 被引量:1
  • 5E Precioso, M Barlaud. B-spline active contours for fast video segmentation. IEEE Int'l Conf on Image Processing, 2001, 2(10): 777~780 被引量:1
  • 6J Zhang, J Gao, W Liu. Image sequence segmentation using 3-D structure tensor and curve evolution. IEEE Trans on Circuits and Systems for Video Technology, 2001, 11(5): 629~640 被引量:1
  • 7I Miki'c, S Krucinski, J D Thomas. Segmentation and tracking in echocardiographic sequences: Active contours guided by optical flow estimates. IEEE Trans on Medical Imaging, 1998, 17(2): 274~284 被引量:1
  • 8E M'emin, P P'erez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans on Image Processing, 1998, 7(5): 703~719 被引量:1
  • 9A Kumar, A R Tannenbaum, G J Balas. Optical flow: A curve evolution approach. IEEE Trans on Image Processing, 1996, 5(4): 598~610 被引量:1
  • 10H Yeo, Y H Hu. A motion estimation and image segmentation technique based on the variable block size. IEEE Int'l Conf on ICASSP, 1997 被引量:1

共引文献2

同被引文献127

引证文献16

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部