期刊文献+

投影型神经网络算法的全局收敛性分析 被引量:4

Global Convergence Analysis on Projection-Type Neural Networks
下载PDF
导出
摘要 投影型神经网络具有自然保证解的可行性、可调参数少、搜索方向维数低和模型结构简单等优点,已引起众多学者关注.神经网络可用于求解优化问题的前提是它应具有全局收敛性.目前,该模型的这一性质仅对有界约束下严格凸二次规划问题得到了证明.该文利用常微分方程理论和LaSalle不变原理,通过构造Lyapunov函数,证明了该网络对一般凸规划问题的全局收敛性,并将约束区域推广到任一闭凸集.该文的结论奠定了该类网络的应用基础,扩大了它的应用范围.同时作者也讨论了该模型在较弱限制条件下的指数收敛性.最后给出一组实例,说明该网络计算上是可行和有效的. Projection-type neural networks for optimization problems can naturally guarantee the feasibility of solutions, and they have advantages over other networks for their less parameters, low searching space dimension and simple structure. But only for strict convex quadratic optimization with bound constraints, their global convergence has been proved theoretically. In this paper, the global convergence of such networks for general convex programming problem is proved by means of ordinary differential equation theory and LaSalle invariance principal. At the same time, their exponential convergent speed is discussed. The obtained results settle the applicability of the networks. Several numerical examples are given to demonstrate the feasibility and efficiency of the networks.
出处 《计算机学报》 EI CSCD 北大核心 2005年第7期1178-1184,共7页 Chinese Journal of Computers
基金 国家自然科学基金(10371097 60473034)资助~~
关键词 神经网络 凸规划 全局收敛 平衡点 投影算子 Boundary conditions Neural networks Numerical methods Optimization Ordinary differential equations
  • 相关文献

参考文献10

  • 1Tao Q. et al.. A high performance neural network for solving nonlinear programming problems with hybrid constraints. Physics Letter A, 2001, 288(2): 88~94 被引量:1
  • 2Xu Z.B., Hu G.Q., Kwong C.P.. Asymmetric Hopfield-type networks: Theory and applications. Neural Networks, 1996, 9(3): 483~501 被引量:1
  • 3Kennedy M.P., Chua L.O.. Neural networks for nonlinear programming. IEEE Transactions on Circuits and Systems, 1988, 35(5): 554~562 被引量:1
  • 4Bouzerdoum A., Pattison T.R.. Neural network for quadratic optimization with bound constraints. IEEE Transactions on Neural Network, 1993, 4(2): 293~303 被引量:1
  • 5Liang X.B., Wang J.. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Transactions on Neural Networks, 2000, 11(6): 1251 ~1262 被引量:1
  • 6Xia Y.S., Wang J.. On the stability of globally projected dynamical systems. Journal of Optimization Theory and Applications, 2000, 106(1): 129 ~150 被引量:1
  • 7Rockafellar R.T.. Convex Analysis. Princeton: Princeton University Press, 1970 被引量:1
  • 8Liao Xiao-Xin. Theory methods and application of stability. Wuhan: Huazhong University of Science and Technology, 1989(in Chinese)(廖晓昕.稳定性理论和方法.武汉:华中理工大学出版社, 1989) 被引量:1
  • 9Xia Y.S., Wang J.. A general methodology for designing globally convergent optimization neural networks. IEEE Transactions on Neural Networks, 1998, 9(6): 1331~1343 被引量:1
  • 10Liang X.B., Jennie S.. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem. IEEE Transactions on Neural Networks, 2001, 12(2): 349~359 被引量:1

同被引文献38

  • 1董宁,莫浩艺,高兴宝.解广义变分不等式的神经网络[J].工程数学学报,2004,21(F12):78-82. 被引量:1
  • 2Youmei LI,Feilong CAO.Projection type neural network and its convergence analysis[J].控制理论与应用(英文版),2006,4(3):286-290. 被引量:1
  • 3YASHTINI M, MALEK A. Solving complementarity and variational inequalities problems using neural networks [ J ]. Applied Mathematics and Computation, 2007, 190( 1 ) :216- 230. 被引量:1
  • 4BNOUHACHEM A. A new projection and contraction method for linear variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2006, 314(2) : 513-525. 被引量:1
  • 5BEN-ISRAEL A, LEVIN G, LEVIN Y, et al. Approximate methods for convex minimization problems with series-parallel structure [ J ].European Joumal of Operational Research, 2008, 189 (3): 841- 855. 被引量:1
  • 6KHORRAM E, HASSANZADEH R. Solving nonlinear optimization problems subjected to fuzzy relation equation constraints with max-average composition using a modified genetic algorithm [ J ]. Computers & Industrial Engineering, 2008, 55(1 ) : 1-14. 被引量:1
  • 7HARKER P T, PANG J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[ J ]. Math Program, 1990, 48(1-3) : 161- 220. 被引量:1
  • 8FACCHINEI F, PANG J S. Finite-dimensional variational inequalities and complementarity problems [ M ]. New York : Springer-Verlag, 2003. 被引量:1
  • 9EFFATI S, JAFARZADEH M. A new nonlinear neural network for solving a class of constrained parametric optimization problems [ J ]. Applied Mathematics and Computation, 2007, 186 ( 1 ) : 814- 819. 被引量:1
  • 10YANG Yong-qing , CAO Jin-de. A feedback neural network for solving convex constraint optimization problems [ J ]. Applied Mathematics and Computation, 2008, 201 ( 1 ) : 340- 350. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部