摘要
图G的STP数是指一个图中所包含的最大的边不交的支撑树的数目.图的STP数记作σ(G).本文讨论了图的支撑树与图的Betti亏数ω(G)之间的关系:即存在图G的边子集E0满足ω(G)p0(2+b(G-E0)p0-σ(G)),其中,c(G-E0)为G-E0的奇分支数,b(G-E0)为G-E0中具有奇Betti数的分支数,p0=c(G-E0)-1.最后我们讨论了一类图的STP数与图的边连通度以及上可嵌入的问题.
The STP number is the maximum edges-disjoint spanning tree in G,denoted σ(G).In this paper, we invesgate that the relations between the STP number and the embed and the embeddablity of a graph. We obtain that ω(G)p_0(2+b(G-E_0)p_0-σ(G)),where p_0=c(G-E_0)-1, c(G-E_0)denotes the components of G-E_0, b(G-E_0) is the components of G-E_0 with odd Betti number. As an appliation, we discuss the upper embeddablity of the graph G^3.
出处
《洛阳大学学报》
2005年第2期1-3,共3页
Journal of Luoyang University
基金
国家自然科学基金资助项目(项目编号:10271048)