期刊文献+

关于图的STP数与图的嵌入

The STP Number and the Embeddablity of A Graph
下载PDF
导出
摘要 图G的STP数是指一个图中所包含的最大的边不交的支撑树的数目.图的STP数记作σ(G).本文讨论了图的支撑树与图的Betti亏数ω(G)之间的关系:即存在图G的边子集E0满足ω(G)p0(2+b(G-E0)p0-σ(G)),其中,c(G-E0)为G-E0的奇分支数,b(G-E0)为G-E0中具有奇Betti数的分支数,p0=c(G-E0)-1.最后我们讨论了一类图的STP数与图的边连通度以及上可嵌入的问题. The STP number is the maximum edges-disjoint spanning tree in G,denoted σ(G).In this paper, we invesgate that the relations between the STP number and the embed and the embeddablity of a graph. We obtain that ω(G)p_0(2+b(G-E_0)p_0-σ(G)),where p_0=c(G-E_0)-1, c(G-E_0)denotes the components of G-E_0, b(G-E_0) is the components of G-E_0 with odd Betti number. As an appliation, we discuss the upper embeddablity of the graph G^3.
作者 吕长青 任韩
出处 《洛阳大学学报》 2005年第2期1-3,共3页 Journal of Luoyang University
基金 国家自然科学基金资助项目(项目编号:10271048)
关键词 STP数 BETTI亏数 上可嵌入 STP number Betti defficiency upper-embeddablity
  • 相关文献

参考文献7

  • 1Mutty and Bondy. Graph theory and application[ M]. 被引量:1
  • 2Liu Yanei. The maximum orientable genus of a graph[J]. Scientia Sinical, Special Issue on Math, 1979:41 -55. 被引量:1
  • 3Nash-williams C st A. Edge-disjoint spanning trees of finite graph[J]. J London Math Sco, 1961, 36:445 -450. 被引量:1
  • 4Nebesky L. Every connected,locally connected graph is upper embeddable [ J]. J Graph, 1981, 5,205 -207. 被引量:1
  • 5Palmer E M. On the spanning trees packing number of a graph: survey[J]. Discrete Mathematics, 2001, 230:13 -21. 被引量:1
  • 6Xuong. How to determine the maximum genus of a graph[J]. Journal of Combinatonrial Theory: Series B, 1979, 26:217 -225. 被引量:1
  • 7田丰,马仲蕃编著..图与网络流理论[M].北京:科学出版社,1987:269.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部