期刊文献+

关于有限群的广义Frattini子群

On Generalized Frattini Subgroup of a Finte Group
下载PDF
导出
摘要 定义了一类极大子群的交Φπ(G),它是Frattini子群的推广,利用它和极大θ-子群偶的性质,给出了幂零群和可解群的几个充要条件. in[3]and[4],the authors give some necessary and sufficient conditions for a soluble group by using the properties of cmaximal subgroup and theta pairs for a maximal subgroup.in this article, Φ_π(G) is defined to be the intersection of a class of the maximal subgroups of G ,which is a generalization of the Frattini subgroup of G. Some necessary and sufficient conditions for a nilpotent group and a soluble group are also obtained in virtue of the properties of the generalized Frattini subgroup and theta pairs for a maximal subgroup.
机构地区 青岛大学数学系
出处 《青岛大学学报(自然科学版)》 CAS 2005年第2期50-52,共3页 Journal of Qingdao University(Natural Science Edition)
关键词 极大子群 Θ-子群偶 幂零群 可解群 Maximal subgroup theta pairs nilpotent group soluble group
  • 相关文献

参考文献6

  • 1Rose J S.A Course on Group Theory[M].London:Cambridge University press.1978. 被引量:1
  • 2赵耀庆.有限群极大子群的θ-子群偶[J].数学学报(中文版),1997,40(1):67-72. 被引量:24
  • 3Yanming Wang. A Class of Frattini-like subgroups of a finite group[J]. J Pure Appl Algebra, 1992,78:101-108. 被引量:1
  • 4Huppert B. Endliche Gneppen Ⅰ[M]. Berlin:Springer. 1967. 被引量:1
  • 5Mukherjee NP,Bhattacharya P. On theta pairs for a maximal subgroup [J]. Proc Amer Math Soc,1990,109(3):589-596. 被引量:1
  • 6Bhattacharya P,Mukherjee N P. On the intersection of a class of Maximal subgroup of a finite group Ⅱ [J]. J Pure ApplAlgebra, 1986,42:117-124. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部