期刊文献+

电站锅炉飞灰含碳量的优化控制 被引量:24

Optimized Control of Carbon Content in Utility Boilers' Fly Ash
下载PDF
导出
摘要 利用人工神经网络对锅炉飞灰含碳量进行建模,并采用混合遗传算法与复合形法进行运行工况寻优,获得当前最佳的锅炉燃烧调整方式,这种方法同时解决了锅炉变工况下运行参数基准值的问题。应用该模型对某台300MW四角切圆燃煤电站锅炉的飞灰含碳量进行优化控制研究,其结果可指导运行人员进行参数优化调整,降低锅炉飞灰含碳量,提高燃烧经济性。 By setting up a neural network model of carbon content in fly ash of boilers, and determining the optimized mode of operation with the help of hybrid genetic algorithm as well as by the compound formation method, the currently best way of adjusting boiler combustion has been obtained, which simultaneously provides a means for finding the basic operational parameters of a boiler under changing modes of operation, With this model the optimization control problem of carbon content in the fly ash of a certain 300MW pulverized coal corner fired utility boiler is being treated, the results of which may serve operators as a guide for optimizing the parameters, reducing the carbon content in the fly ash and raising combustion efficiency. Figs 3, tables 4 and refs 7,
出处 《动力工程》 EI CAS CSCD 北大核心 2005年第3期391-391,共1页 Power Engineering
关键词 电站锅炉 人工神经网络 飞灰 含碳量 优化控制 automatic control technique fly ash's carbon content neural network genetic algorithm compound formation method combustion optimization
  • 相关文献

参考文献6

二级参考文献24

  • 1张才根.改善锅炉水平烟道两侧烟温差的方法及其效果[J].锅炉技术,1994(8):1-4. 被引量:8
  • 2吴国定.DG220/9.8-4型锅炉主蒸汽温度低于设计值的探讨[J].四川电力技术,1994,17(2):44-47. 被引量:1
  • 3周昊 朱洪波 曾庭华 等(Zhou Hao Zhu Hongbo Zeng Tinghua et al.)大型四角切圆燃烧锅炉NOx排放特性的神经网络模型(An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler)[J].. 被引量:1
  • 4Hechi Nielsen R. Theory of the back propagation neural network[J]. Proc of IJCNN,1989(1):593-603. 被引量:1
  • 5Zbigniew Michalewicz. Genetci Algorithms + Data Structures = Evolution Programs[C]. 3rd ed, New York:Springer-Verlag Berlin Heidelberg, 1996. 被引量:1
  • 6Hechi Nielsen R.Theory of the back propagation neural network [M].Proc of IJCNN,1989,1:593-603. 被引量:1
  • 7焦李成(Jiao Licheng).神经网络系统理论(The theory of neural network system)[M].西安:西安电子科技大学出版社(Xi'an:Xi'an Electronic and science University Press),1990,242-251. 被引量:1
  • 8Yin C,Luo Z,Zhou J,et al.A novel non-linear programming-based coal blending technology for power plants [J].Chemical Engineering Research and Design,2000,78(1):118-124. 被引量:1
  • 9Carsky M,Kuwornoo D K.Neural network modelling of coal pyroly-sis [J].Fuel,2001,80(7):1021-1027. 被引量:1
  • 10Zhu Q,Jones J M,Williams A,et al.The predictions of coal/char combustion rate using an artificial neural network approach [J].Fuel, 1999,78(14):1755-1762. 被引量:1

共引文献213

同被引文献237

引证文献24

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部