期刊文献+

纤维相强化Cu-12%Ag合金的组织和力学性能 被引量:16

Microstructure and mechanical properties of Cu-12%Ag filamentary composite
下载PDF
导出
摘要 通过冷变形拉拔结合中间热处理制备了纤维相增强的Cu12%Ag(质量分数)合金,研究了变形过程对组织形态和力学性能的影响。随着变形程度的增加,不连续分布的原始共晶体演变成细密的纤维束结构,合金强度和硬度升高。在一定变形程度范围内或当共晶纤维束间距约大于150nm时,抗拉强度随共晶纤维束间距的变化类似于HallPetch关系,强化效应与位错塞积机制有关;当拉拔变形超过一定程度或共晶纤维束间距小于约150nm后,合金强化速率降低并偏离HallPecth关系,强化效应可认为与界面障碍机制有关。 Cu-12%Ag filamentary composite was prepared by cold drawing and intermediate heat treatments. The evolution of filamentary microstructure and mechanical properties were investigated for the alloy at different draw ratio. With the increasing draw ratio, the as-cast eutectic colonies with a discontinuous distribution develop into fine fibrous bundles to result in the increase of the strength and hardness. As the draw ratio is in a certain strain range or the spacing of eutectic fibrous bundles greater than is 150nm, the ultimate tensile strength dependent on the spacing of eutectic fibrous bundles is similar to the Hall-Petch relationship. The mechanism of pile-up of dislocation can be suggested to be responsible for the strengthening benefit. As the draw ratio is over a certain degree or the spacing of eutectic fibrous bundles is less than 150nm, the strength increase becomes slow and deviates from the Hall-Petch relationship. The mechanism of athermal obstacles at the interfaces can be suggested to be responsible for the strengthening benefit.
作者 张雷 孟亮
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第5期751-756,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50371076) 高等学校博士学科点专项科研基金资助项目(20020335014)
关键词 CU-AG合金 纤维组织 强度 硬度 应变率 Cu-Ag alloy filamentary microstructure strength hardness draw ratio
  • 相关文献

参考文献16

  • 1张雷,颜芳,孟亮.高强高导Cu-Ag合金的研究现状与展望[J].材料导报,2003,17(5):15-17. 被引量:23
  • 2Grünberger W, Heilmaier M, Schultz L. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at dresden [J].Physica B,2001,294-295:643-647. 被引量:1
  • 3Maeda H, Inoue K, Kiyoshi T, et al. Present status and future plan of the tsukuba magnet laboratories[J].Physica B,1996,216:141-145. 被引量:1
  • 4Wood J T, Embury J D, Ashby M. An approach to materials processing and selection for high-field magnet design[J]. Acta Mater, 1997, 45:1099-1104. 被引量:1
  • 5Sakai Y, Inoue K, Asano T, et al. Development of high-strength, high-conductivity Cu-Ag alloys for high-field pulsed magnet use[J].Appl Phys Lett,1991,59(23):2965-2967. 被引量:1
  • 6Sakai Y, Schneider-Muntau H J. Ultra-high strength high conductivity Cu-Ag alloy wires[J].Acta Mater,1997,45:1017-1023. 被引量:1
  • 7Benghalem A,Morris D G.Microstructure and strength of wire-drawn Cu-Ag filamentary composites [J]. Acta Mater,1997,45: 397-406. 被引量:1
  • 8Han K,Vasquez A A,Xin Y,et al.Microstructure and tensile properties of nanostructured Cu-25wt%Ag [J].Acta Mater,2003,51:767-780. 被引量:1
  • 9Hong S I, Hill M A. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites [J]. Mater Sci Eng A,1999, A264: 151-158. 被引量:1
  • 10Zhang L, Meng L. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys[J]. Mater Sci Tech-Lond,2003,19:75-79. 被引量:1

二级参考文献20

共引文献84

同被引文献236

引证文献16

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部