期刊文献+

电子商务网站的用户访问模式挖掘 被引量:7

Mining User Access Patterns at E-Commerce Sites
下载PDF
导出
摘要 对电子商务网站的用户访问模式挖掘的方法和模式的应用做了系统的论述。在数据的预处理技术方面,提出了新的框架过滤算法、识别搜索引擎Robot产生的访问记录的技术和会话子序列生成算法,并就站点性能改善、个性化服务、实现商业智能三方面的应用对用户访问模式的挖掘做了探讨,最后给出了从语义上理解和挖掘用户访问行为的方法。 The method and application of mining user access patterns at e-commerce sites are addressed. The techniques of data pre-processing are discussed. The Frame filtering technique, search engine robots detecting technique, session sub-sequence generating technique are proposed. And, the three applications of user access patterns mining are discussed, which include site performance improving, personalization and business intelligence. Finally, the method of understanding and mining user access patterns on semantic is proposed.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第5期170-174,共5页 Microelectronics & Computer
基金 佛山科学技术学院科研基金资助
关键词 用户访问模式 电子商务 WEB挖掘 个性化服务 商业智能 User access pattern, E-commerce, Web mining, Personalization, Business intelligence
  • 相关文献

参考文献5

  • 1MarkSeiger MarkRMadsen JimmyLangston HowardLombard著.点击流数据仓库[M].北京:电子工业出版社,2004.01.. 被引量:3
  • 2Alan L Montgomery, Shibo Li, Kannan Srinivasan, John CLiechty. Predicting Online Purchase Conversion Using Web Path Analysis[EB/OL]. http://gsbwww. uchicago.edu /kilts / research / qme / papers / onlinepurchase. pdf, 2003. 被引量:1
  • 3王实,高文,李锦涛.基于用户访问事务文法的序列关联规则发现[J].软件学报,2001,12(10):1503-1509. 被引量:5
  • 4Wendy W Moe. Buying, Searching, or Browsing: Differentiating between Online Shoppers Using In-Store Navigational Clickstream [J]. Journal of Consumer Psychology,2003, 13 (1-2): 29~40. 被引量:1
  • 5Catarina Sismeiro, Randolph E Bucklin. Modeling Purchase Behavior at an E-Commerce Web Site: A Task Completion Approach[EB/OL]. http: //www.anderson. ucla.edu / faculty / randy. bucklin / research. htm, 2004. 被引量:1

二级参考文献8

  • 1[1]Borges, J., Levene, M. Data mining of user navigation patterns. In: Brij, Masand, ed. The Web Usage Analysis and User Profiling Workshop. San Diego, CA: ACM Press, 1999. 31~36. 被引量:1
  • 2[2]Cooley, R., Mobasher, B., Srivastava, J., et al. Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems, 1999,1(1):17~24. 被引量:1
  • 3[3]Stort, R. Web Site Stats: Tracking Hits and Analyzing Traffic. Osborne: McGraw-Hill, 1997. 被引量:1
  • 4[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules. In: Fayyad, U., ed. Proceedings of the 20th VLDB Conference. Santiago, Chile: IEEE Society Press, 1994. 487~499. 被引量:1
  • 5[5]Wexelblat, A., Maes, P. Footprints: history-rich web browsing. In: Jan, Pedersen, ed. Proceedings of the Conference on Computer-Assisted Information Retrieval (RIAO). New York: IEEE Society Press, 1997. 75~84. 被引量:1
  • 6[6]Spiliopoulou, M. The laborious way from data mining to web mining. International Journal of Computing Systems, Science and Engineering, 1999,3(2):42~47. 被引量:1
  • 7[7]Luotonen, A. The common log file format. 1995. http://www.w3.org/pub/WWW/. 被引量:1
  • 8[8]Rosenfeld, R. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech, and Language, 1996,10(1):51~67. 被引量:1

共引文献6

同被引文献24

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部