摘要
讨论了特征值和奇异值反问题,首先给出了n阶复矩阵存在的充分条件,该矩阵以n个给定的复数为特征值,m(m<n)个非负数为奇异值。其次对以n个任意给定的负数为奇异值和以m(m≤n)个任意给定的复数为特征值的情形作了一些改进。
In this paper, the inverse general problem of eigenvalues and singular values is discussed. First, a sufficient condition for the existence of an n×n complex matrix with n given complex numbers as eigenvalues and m(m<n) given nonnegative numbers to be m of the singular values is determined. Second, the result of Chi-kwong Li and Roy Mathias is slightly modified to treat the case given nonnegative numbers as singular values and m(m≤n)given complex numbers to be of the eigenvalues.
出处
《东莞理工学院学报》
2005年第3期7-10,共4页
Journal of Dongguan University of Technology