期刊文献+

一种基于区间分布的自适应背景提取算法 被引量:7

A Zonn-Distribution Based Adaptive Background Abstraction Algorithm
原文传递
导出
摘要 交通流量的视频检测离不开背景提取。现有的背景提取算法往往运算量大,不能快速跟踪背景变化。本文提出一种基于区间分布的自适应背景提取算法,该算法利用背景像素值的分布特征,得到背景的估计模型。实验结果表明,相对于其他自适应背景提取算法,区间分布法能够较好地自适应环境光线的变化,快速跟踪背景的变化,同时计算量较小,能够满足实时性要求。 Background abstraction is an essential step of traffic flow detection based on video. Currently, background abstraction algorithm with high computation cost can not deal with fast variance of background. This paper proposes a new adaptive background abstraction algorithm based on Zone--Distribution. The algorithm constructs the background estimation model based on the distribution characteristics of background pixel value. The experimental results show that the al-- gorithm can be adaptive of variance of environment lighting condition and track background change. The computation cost of the Zone--Distribution algorithm over other adaptive algorithms is smaller and can satisfy the real--time requirement.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第3期316-321,共6页 Pattern Recognition and Artificial Intelligence
关键词 智能交通系统 交通流量检测 背景提取 Intelligent Transportation System Traffic Flow Detection Background Abstraction
  • 相关文献

参考文献8

  • 1Vass J, Palaniappan K, Zhuang X. Automatic Spatio-Temporal Video Sequcence Segmentation. In: Proc of the IEEE International Conference on Image Processing. Chicago, USA, 1998,958-962. 被引量:1
  • 2Badenas J, Bober M, Pla F. Segmenting Traffic Scenes from Grey Level and Motion Information. Pattern Analysis and Applications, 2001, 4 ( 1 ) : 28- 38. 被引量:1
  • 3Jung Y K, Ho Y S. Traffic Parameter Extraction Using Video-Based Vehicle Tracking. In: Proc of the IEEE International Conference on Intelligent Transportation Systems. Tokyo, Japan, 1999, 764-769. 被引量:1
  • 4Giachetti A, Cappello M, Torre V. Dynamic Segmentation of Traffic Scenes. In: Proc of the IEEE Symposium on Intelligent Vehicle. Detroit, USA, 1995, 258-263. 被引量:1
  • 5Guo D, Hwang Y C, Adrian Y C, Laugier C. Traffic Monitoring Using Short-Long Term Background Memory. In: Proc ofthe IEEE 5th International Conference on Intelligent Transportation Systems. Singapore, Singapore, 2002, 124- 129. 被引量:1
  • 6Koller D, Weber J, Huang T, Malik J, Ogasawara G, Rao B,Russell S. Towards Robust Automatic Traffic Scene Analysis in Real-Time. Pattern Recognition, 1994, 1:126-131. 被引量:1
  • 7Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-Time Tracking. In: Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999, Ⅱ : 246-252. 被引量:1
  • 8Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 747-757. 被引量:1

同被引文献88

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部