期刊文献+

一类G-(F,ρ)凸多目标分式规划的最优性条件(英文) 被引量:2

Optimality Conditions for A Class of Multiobjective Fractional Programming with G - (F, ρ) Convexity
下载PDF
导出
摘要 本文讨论了一类多目标分式规划问题,其中所包含的函数是局部Lipschitz的和Clarke次可微的.首先,在G-(F,ρ)凸的条件下,证明了择一定理.然后,证明了该多目标分式规划问题在Geoffrion意义下的真有效解的充分条件和必要条件. In this paper, a class of multiobjective fractional programming is studied, where the involved functions are local Lipschitz and Clarke subdifferentiable. First, under G-(F, ρ) convexity, the alternative theorem is proved. Then, sufficient condition and necessary condition for a properly efficient solution in the sense of Geoffrion are proved.
出处 《运筹学学报》 CSCD 北大核心 2005年第2期40-48,共9页 Operations Research Transactions
基金 Project supported by the National Natural Science Foundation of China, No. 19871009.
关键词 多目标分式规划 最优性条件 LIPSCHITZ 规划问题 择一定理 必要条件 充分条件 真有效解 证明 可微 函数 Operations research, multiobjective optimization, properly efficient solution, optimality Condition
  • 相关文献

参考文献9

  • 1Chen, X.H. Optimality and duality for the multiobjective fractional programming with the generalized (F, ρ) convexity, Journal of Mathematical Analysis amd Applicctions, 2002, 273:190~205. 被引量:1
  • 2Clarke, F.H. Optimization and Nonsmooth Analysis, Wiley, 1983. 被引量:1
  • 3Sawaragi, Y., Nakayama, H., Tanino, T. Theory of Multiobjective Optimization, Academic Press, New York, 1985. 被引量:1
  • 4Huang, X.X., Yang, X.M., On characterizations of proper efficiency for nonconvex multiobjective optimization, Journal of Global Optimizatin, 2002, 23: 213~231. 被引量:1
  • 5Giorgi, G., Molho, E. Generalized invexity: Relationship with generalized convexity and applications to optimality and duality conditions, In Generalized Concavity for Economic, Edited by P. Mazzoleni, Tecnoprint, Bologna, 1992, 53~70. 被引量:1
  • 6Giorgi, G., Guerraggio, A. Various types of nonsmooth invex functions. J. Inform. Optim. Sci.,1996, 17: 137~150. 被引量:1
  • 7Kanniappan, P., Pandian, P. On generalized convex functions in optimization theory -A survey,Opsearch, 1996, 33: 174~185. 被引量:1
  • 8Pini, R., Singh, C. A survey of recent [1985-1995] advances in generalized convexity with applications to duality theory and optimality conditions, Optimization, 1997, 39: 311~360. 被引量:1
  • 9Giorgi, G., Guerraggio, A. The notion of invexity in vector optimization: Smooth and nonsmooth cases, In Generalized Convexity, Generalized Monotonicity: Recent Results, (Edited by J.P. Crouzeix et al.), Kluwer Academic, The Netherlands, 1998, 389~405. 被引量:1

同被引文献15

  • 1刘三明,冯恩民.一类多目标分式规划问题的ε-弱有效解的最优性条件和对偶[J].运筹与管理,2004,13(6):16-21. 被引量:3
  • 2曾德胜,吴泽忠.一类多目标分式规划问题的最优性条件[J].四川大学学报(自然科学版),2006,43(4):751-756. 被引量:7
  • 3Keyakumar V. Mond B. On generalized conex mathematical programming[ J]. J Austral. Math Soc Ser B, 1992,34( 1 ) :43 -53. 被引量:1
  • 4Clarke F H. Optimization and nonsmooth analysis[ M ]. New York:Wiley - Interscience, 1983. 被引量:1
  • 5Preta V. On efficiency and duality for multiobjective programs[ J]. Journal of Mathematical Analysis and Applications,1992,166(2) :356 -377. 被引量:1
  • 6林锉云,董加礼.多目标优化的方法与理论[M].长春:吉林教育出版社,1994. 被引量:1
  • 7Chen Xiuhong.Optimization and duality theorem for multiobjective fractional programming with the generalized convexity[J].Journal of Mathematical Analysis and Applications,2002,273:190-205. 被引量:1
  • 8Liang Z.A.,Huang H.X.,Pardalos P.M.Efficiency conditions and duality for a class of multiobjective fractional programming problems[J].J.Global Optim,2003,27:447-471. 被引量:1
  • 9Clarke F H.Optimization and nonsmooth analysis[M].New York:Wiley-Interscience,1983. 被引量:1
  • 10Preta V.On efficiency and duality for multiobjective programs[J].Journalof Mathematical Analysis and Applications,1992,166(2):356-377. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部