期刊文献+

具HollingⅡ型功能反应的捕食-食饵差分系统周期解的存在性

Existence of Positive Periodic Solution of a Predator-Two Prey Difference System with HollingⅡFunctional Respones
下载PDF
导出
摘要 利用重合度理论的延拓定理讨论了具HollingⅡ型功能反应的捕食-食饵差分系统周期解的存在性,得到了保证周期解存在的充分条件。 By using a continuation theorem based coincidence degree theory, we study the existence of periodic solution for HollingⅡ One Predator-Two Prey Difference System, a set of verifiable sufficient conditions are established for the existence of positive periodic system.
出处 《柳州师专学报》 2005年第2期115-119,140,共6页 Journal of Liuzhou Teachers College
关键词 HouingⅡ型功能反应 捕食-食饵差分系统 重合度 周期解 HollingⅡfunctional respones Predator-Two Prey Difference System coincidence degree periodic solution
  • 相关文献

参考文献6

二级参考文献38

  • 1[4]Smith H L. Periodic solutions of periodic competitive and cooperative systems[J]. SIAM J Math Anal, 1986,17(4):1289-1318. 被引量:1
  • 2[5]May R M. Theoretical Ecology, Principles and Applications[M]. Sounders, philadelphia, 1976. 被引量:1
  • 3[6]Jing'an Cui, Chen L S. Global Asymptotic Stability in a Nonautonomous Cooperative System[J]. System Science and Mathematics Sciences, 1993, 6(1):39-44. 被引量:1
  • 4[8]Meng Fan, Sheba Agarmal. Periodic solutions for a class of discrete time competition systems[J]. Nonlinear Studies, 2002, 9(3):249-261. 被引量:1
  • 5[9]Fan M, Wang K. Periodicity solutions of a discrete time nonautonomous ratio-dependent predator-prey system[J]. Math and Compu Modelling, 2002, 35(3):951-961. 被引量:1
  • 6[10]Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: SpringerVerlag, 1977. 56-69. 被引量:1
  • 7[11]Zhang R Y. Periodic solutions of a single species discrete population model with periodic harvest/stock[J].Computers and Mathematics with Applications, 2000, 39(1): 77-90. 被引量:1
  • 8[1]Li Y K. Periodic solutions of a periodic delay predator-prey system[J]. Proc Amer Math Sco, 1999,127(5):1331-1335. 被引量:1
  • 9[2]Fan M, Wang K. Existence and global attractivity of positive periodic solutions of periodic n-species LotkaVolterra competition systems with several deviating arguments[J]. Math Biosci, 1999, 160(1):47-61. 被引量:1
  • 10Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations [M]. Berlin : Springer-Verlag, 1977. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部