摘要
籍用平均函数和积分算子,对二阶含阻尼项椭圆型微分方程∑Ni,j=1Di[aij(x)Djy]+∑Ni=1bi(x)Diy+q(x)f(y)=0建立了一些区域振动准则,这些准则不同于已知的依赖于整个区域Ω(1)的性质的结果,而是仅依赖于区域Ω(1)的一列子区域的性质.
By using average functions and integral operators, some domain oscillation criteria for second order demped elliptic equations are established,which are different from most known ones in the sense that they are based on the information only on a sequence of subdomians of Ω(1), rather than on the whole of Ω(1).
出处
《数学物理学报(A辑)》
CSCD
北大核心
2005年第3期374-380,共7页
Acta Mathematica Scientia
关键词
区域振动
二阶含阻尼项椭圆型微分方程
平均函数
积分算子
Domain oscillation
Second order demped elliptic equations
Averaging function
Integral operator.