摘要
设B为S上全函数空间且是弱序列完备的,任意f∈B可被有限逼近,span{δs:s∈B}=B?,则K?PBBs为相对弱序列紧的当且仅当K有界并且Ts(K)为Bs中相对弱序列紧集。其中Ts:PBBs→Bs为Ts(y)=y(s),?y∈PBBs。
Let B be a full function space on S and weakly sequential completed. For each f ∈ B ,it can be approximated with functions restricted to finite set. Supposed span{δs : s∈ B} = B?. Let Ts : PBBs → Bs with Ts(y) = y(s),?y ∈ PBBs . Then ,for K ? PBBs, K is relative weakly sequentially compact set if only if K is bounded and Ts(K) is relative weakly sequentially compact set in Bs .
出处
《芜湖职业技术学院学报》
2004年第2期39-42,共4页
Journal of Wuhu Institute of Technology
关键词
置换空间PBBS
弱序列完备
弱紧性
substitution spaces PBBS
weak sequential convergences
weak compactness.