期刊文献+

基于数据融合技术的多模型状态监测与故障预报 被引量:3

基于数据融合技术的多模型状态监测与故障预报
下载PDF
导出
摘要 提出了将多传感器数据融合技术引入到工程系统的状态监测与故障预报领域,实现多模型监测,以提高故障预报的准确性和可靠性,并研究了将Bayes融合算法和自适应加权算法相结合实现多模型的决策融合。并针对一套石油化工工业的流化催化裂化装置(FCCU)仿真系统建立了多模型监测系统,融合的结果表明,对比于单一模型预报,通过使用融合算法实现多模型监测可以有效地提高预报的可靠性。 In this paper,one attempt to introduce a metaphor procedure to multi-sensor data fusion for engineering system condition monitoring.To implement the strategy, three different models are built to monitor a simulated process of Fluid Catalytic Cracking Unit FCCU system. By using an improved Bayesian fusion algorithm,better diagnostic conclusions are obtained which is more reliable than that from one-model diagnosis results.
作者 童国强 陈前
出处 《工业控制计算机》 2005年第6期19-20,61,共3页 Industrial Control Computer
基金 国家自然科学基金资助(资金编号:60234010)
关键词 数据融合技术 多模型状态监测 故障预报 贝叶斯推理 流化催化裂化装置 data fusion,fault prediction,bayesian reasoning,FCCU
  • 相关文献

参考文献4

二级参考文献11

共引文献9

同被引文献41

  • 1冯恩波,肖德云,方崇智.一种基于时序预报神经网络的故障预报方法及其应用[J].自动化学报,1995,21(3):348-352. 被引量:11
  • 2陈小惠,陈蓓玉,郑子扬.分布式水下多传感器多目标模糊跟踪融合方法[J].中国造船,2006,47(3):77-83. 被引量:4
  • 3Wu Qishi, Nageswara S V. On computing mobile abent routes for data fusion in distributed sensor networks[ J]. IEEE Transactions on Knowledge & Data Engineering,2004,55 (8) :45-49. 被引量:1
  • 4Bar Shalom. One-step solution for the muhistep out-of-sequencemeasurement problem in trackinb [ J ]. IEEE Transactions on Aerospace & Electronic Systems,2004,10( 1 ) :81 -86. 被引量:1
  • 5Fu Hua, Shao Liangshan. An application of artificial neutral network to control of fan ventilator in coal mines[ J]. Journal of Coal Science & Engineering,2002,8(2) :80-83. 被引量:1
  • 6Angeli C,Chatzinikolaou A.Fault prediction and compensation functions in a diagnostic knowledge-based system for hydraulic systems[J].Journal of Intelligent and Robotic Systems:Theory and Applications,1999,26(2):153~165. 被引量:1
  • 7Pena J M,Letourneau S,Famili F.Application of rough sets algorithms to prediction aircraft component failure[A].Proceedings of IDA99-3rd International Symposium on Intelligent Data Analysis[C].Berlin,Germany:Springer-Verlag,1999.473~484. 被引量:1
  • 8Yang S K,Iiu T S.A Petri net approach to early failure detection and isolation for preventive maintenance[J].Quality and Reliabllity Engineering International,1998,14 (5):319~330. 被引量:1
  • 9Isermann R.Process fault detection based on modeling and estimation methods-a survey[J].Automatica,1984,20(4):387~404. 被引量:1
  • 10Yang S K.An experiment of state estimation for predictive maintenance using Kalman filter on a DC motor[J].Reliability Engineering & System Safety,2002,75 (1):103 ~ 111. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部