期刊文献+

轧机液压AGC系统基于神经网络的传感器故障诊断技术 被引量:3

Sensor Fault Diagnosis Technology Based on Neural Networks for Hydraulic AGC System of Strip Rolling Mill
下载PDF
导出
摘要 针对板带轧机液压AGC系统在线故障诊断问题,建立了一种基于非线性自回归滑动平均模型(NARMA的递归神经网络,通过AIC定阶法确定模型阶次。运用生产实际数据,通过动态学习算法完成对网络的训练,使网络映射系统的动力学特性。该网络模型避免了故障的自学习,能够很好地实现故障检测。试验研究证明了该神经网络方法进行轧机液压AGC系统在线故障诊断的可行性和有效性。 For on-line fault diagnosis of hydraulic AGC system on strip rolling mill, a recursive neural network model based on NARMA was established. The model order is determined by AIC method. By training with dynamic learning algorithm and actual production data, neural networks can map system dynamic characteristics. This network model can avoid fault self-learning and has better diagnosis capability. Feasibility and efficiency of this method was verified by experiment.
出处 《钢铁》 CAS CSCD 北大核心 2005年第5期45-48,共4页 Iron and Steel
基金 国家自然科学基金项目(50375135) 河北省自然科学基金资助项目(E2005000323)
关键词 AGC NARMA 递归神经网络 故障诊断 hydraulic AGC NARMA recursive neural network fault diagnosis
  • 相关文献

参考文献5

  • 1连家创.板厚板形控制[M].北京:兵器工业出版社,1996.4. 被引量:44
  • 2Narendra K S,Mukhopadhyay S. Adaptive Control Using Neural Networks and Approximative Models[J]. IEEE Transactions on Neural Networks, 1997,8(3):475-485. 被引量:1
  • 3孙一康编著..带钢冷连轧计算机控制[M].北京:冶金工业出版社,2002:238.
  • 4Galvan I M,Isasi P,Zaldivar J M. An Alternative to Phenomenological Models in Chemical Reactors[J]. Engineering Applications of Artificial Intelligence,2001, (14) : 139-154. 被引量:1
  • 5Cohen B, Saad D, Maram E. Efficient Training of Recurrent Neural Network with Time Delays[J]. Neural networks, 1997,10(1):51-59. 被引量:1

共引文献43

同被引文献46

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部