期刊文献+

概率神经网络信用评价模型及预警研究 被引量:21

Study on Credit Scoring Model and Forecasting Based on Probabilistic Neural Network
原文传递
导出
摘要  介绍了概率神经网络(PNN)方法及其分类机理,构造了用于识别两类模式样本的PNN结构,用来对我国2000年106家上市公司进行两类模式分类.仿真结果表明,PNN对训练样本有很高的分类准确率,能达到100%;但对测试样本的分类准确率却很低,只达到69 77%.因而使总体的分类效果偏差,分类准确率只达到87 74%.进一步的仿真结果表明,该方法对我国2001年公布的13家预亏公司进行预警分析时,准确率只达到69 23%.所以PNN不太适合用来对新样本的识别和预警研究.研究结果还表明,PNN在分类效果上不如MLP(对相同的样本,多层感知器分类准确率达到98 11%),但和Yang等的PNN分类效果(分类准确率最高达到74%)相比,该文给出的PNN结构其分类效果更好.所以作为一种方法上的探讨,PNN仍不失其研究的价值. The article introduces the method of probabilistic neural network (PNN) and its classifying principle. It constructs a PNN structure for identified two patterns samples. The PNN structure is used to separate 106 listed companies of our country in 2000 into two groups. The simulations show that, the classification accuracy rate of PNN to the training samples is very high which is up to 100%, but the classification accuracy rate of PNN to the testing samples is very low which is only 69.77%. Therefore, the classification effect to the population tends to bad and the accuracy rate is only 87.74%. Further simulating results show the predicting accuracy rate is only 69.23% when the PNN is used to predict 13 pre-distressed companies which are published in advance from China in 2001. Therefore, PNN is not suitable to identify a new sample or to carry out predicting study. The research also shows that, PNN is not as good as MLP (to the same data, the classification accuracy rate of the multilayer perceptron is 98.11%). But compare with Yang's work about PNN's classification (the classification accuracy rate is 74%) effect, the classification effect of the PNN structure given by here is better. Therefore, as a discussion of method, PNN still have research value.
作者 庞素琳
机构地区 暨南大学数学系
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第5期43-48,共6页 Systems Engineering-Theory & Practice
基金 广东省自然科学基金(31906) 广东省科技厅(2004B10101033) 广州市科技局攻关项目(2004Z3 D0231)
关键词 概率神经网络 信用评价模型 模式分类 财务预警 probabilistic neural network credit scoring model patterns classification financial predicting
  • 相关文献

参考文献9

  • 1Specht D F. Probabilistic neural network[J]. Neural Network, 1990, 3(2): 109-118. 被引量:1
  • 2Tyree Erie W, Long J A. Assessing financial distress with probabilistic neural network[A]. Proceedings of the Third International Conference on Neural Networks in the Capital Market[C]. 1995. 被引量:1
  • 3Yang Z Y, Marjorie B. Platt and Harlan D. Platt. Probabilistic neural networks in bankruptcy prediction[J]. Journal of Business Research, 1999, 44:67 - 74. 被引量:1
  • 4Hajmeer M, Basheer I. A probabilistic neural approach for modeling and classification of bacterial growth/no-growth data[J]. Joural of Microbiological Methods. 2002, 51: 217 - 226. 被引量:1
  • 5Laurent Simon M. Nazmul Karim. Probabilistic neural network using Bayesian decision strategies and a modified gompertz model for growth phase classification in the batch culture of bacillus subtilis[J]. Biochemical Engineering Journal. 2001, 7:41-48. 被引量:1
  • 6庞素琳,王燕鸣,罗育中.多层感知器信用评模型及预警研究[J].数学的实践与认识,2003,33(9):55-62. 被引量:18
  • 7庞素琳,王燕鸣.多层感知器信用评价模型研究[J].中山大学学报(自然科学版),2003,42(4):118-122. 被引量:14
  • 8Hugo Guterman, Youval Nehmadi, Andrei Chisyakov, Jean F. Soustiel, Moshe Feinsod. A comparison of neural network and bayes recognition approachs in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis[J] . International Journal of Bio-Medical Computing, 1996, 43: 203 - 213. 被引量:1
  • 9黄德双,保铮.基于径向基函数网络的雷达目标一维像识别技术研究[J].电子科学学刊,1995,17(1):26-34. 被引量:6

二级参考文献17

  • 1JENSEN H. Using neural networks for credit scoring[ J ].Managerial Finance, 1992,18(6) : 15 - 26. 被引量:1
  • 2COATS P, PANT L. Recnganizing finasmial distress patterns using a neural network tool[ J ]. Financial Management,1993:142 - 155. 被引量:1
  • 3ALTMAN E, MARCO G, etal. Corporate distress diagnosis:comparisom using linear discriminant analysis and neural netwoeks ( the Italian experience ) [ J ]. J Banking and Finance, 1994, 18:505-529. 被引量:1
  • 4HASHEMI R R,Le BLANC L A, RUCKS C T, et al. A hybrid intelligent system for predicting bank holding structrure[ J ]. European Journal of Operational Research,1998, 109: 390-402. 被引量:1
  • 5WEST D. Neural network credit scoring models [ J ].Computers & Operations Research, 2000, 27:1131 - 1152. 被引量:1
  • 6MALHOTRA R, MALHOTRA D K. Differentiating between good credits and bad credits using neuro-fuzzy systems[J].Computing,Artificial Intelligence and Information Technology, 2002, 136:190-211. 被引量:1
  • 7RUMELHART D E, McCLELLAND J L, the PDF Research Group. Parallel Distributed Processing[M] .Cambridge M A:MIT Press, 1986.Vols 1-2. 被引量:1
  • 8HUSH D R, HORNE.Progress in supervised neural networks[J]. IEEE Signal Process Mag, 1993, 10:8 - 39. 被引量:1
  • 9团体著者,1992年 被引量:1
  • 10黄德双,博士学位论文,1992年 被引量:1

共引文献33

同被引文献213

引证文献21

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部