期刊文献+

基于人工神经网络优化抄纸浆料配比 被引量:2

Optimization of Paper Formulation Based on Artificial Neural Network
下载PDF
导出
摘要 提出了应用人工神经网络技术进行抄纸浆料配比优化的方法,介绍了优化原理和过程。以卷烟纸为例,建立了多种浆料的配比与纸张主要物理性能指标之间的人工神经网络模型。该模型比传统回归模型有着更高的预测精度。以此模型为基础,通过扫描仿真,获得了针叶木浆、麻浆及填料配抄生产卷烟纸的各组分的配比范围,并从中优选出最佳配比。 Artificial Neural Network (ANN) was applied to optimize the of paper formulation. The theory and process were described. ANN model between paper physical characteristics and the formulation of cigarette paper was established. The model had higher prediction precision compared with traditional regression model. The optimum formulation of the paper was found based on the information about the different ratio of various components of the cigarette paper such as softwood pulp, hemp pulp and filler obtained through scanning simulation. The satisfactory results showed that the new method was practicable.
出处 《中国造纸》 CAS 北大核心 2005年第5期44-46,共3页 China Pulp & Paper
关键词 人工神经网络(ANN) 浆料配比 优化 artificial neural network pulp ratio optimization
  • 相关文献

参考文献4

二级参考文献2

共引文献3

同被引文献27

  • 1刘秋洪.提高轻量涂布纸不透明度的途径[J].中国造纸,2004,23(10):14-16. 被引量:2
  • 2胡惠仁,李海明,张盆.脱墨浆高白度漂白初步研究[J].中国造纸,2005,24(3):5-7. 被引量:3
  • 3飞思科技产品研发中心.神经网络与MATLAB7实现[M].北京:电子工业出版社,2005. 被引量:22
  • 4翁诗甫.傅里叶变换红外光谱[M].北京:化学工业出版社,2005. 被引量:1
  • 5Hahtunen M. Determination of SB-latex distribution at paper coating surfaces with FTIR/ATR spectroscopy[ C ]//Coating and graphic arts conference and trade fair (2001). 2001. 被引量:1
  • 6Dupuy N, Duponchel L. Quantitatie analysis of latex in paper coatings by ATR-FTIR spectroscopy [ J ] , Journal of Chemometrics, 1994, 8 : 333. 被引量:1
  • 7Dupuy N, Ruckebush C, Duponchel L, et al. Quantitative determi- nation of polymer and mineral content in paper coatings by infrared spectroscopy. Improvements by non-linear treatments [ J ], Analytica Chimica Acta, 1996, 335( 1 ) : 79. 被引量:1
  • 8Dolmatova L, Ruckebusch C, Dupuy N, et al. Quantitative analysis of paper coatings using artificial neural networks [ J ]. Chemometrics Andintelligent Laboratory Systems, 1997, 36: 125. 被引量:1
  • 9Specht D F. A general regression neural network[J]. IEEE Transav- tions on Neural Networks, 1991, 2(6) : 568. 被引量:1
  • 10Vikman K, Sipi K. Applicability of FTIR and Raman spectroscopic methods to the study of paper-ink interactions in digital prints [ J ]. Journal of Imaging Science and Technology, 2003, 47(2) : 139. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部