期刊文献+

基于GMDH型神经网络的EEG分类研究 被引量:2

Research on EEG Classification With GMDH-type Neural Network
下载PDF
导出
摘要 为了提高对不同认知状态下脑电信号 (EEG)的分类正确率 ,提出一种GMDH型神经网络及改进的训练算法。此网络结构在演化中生成 ,分类规则由简单多项式表示 ,训练算法可防止出现过拟合。此网络用于区分算术运算和休息状态下的脑电信号 ,正确率达到 84 5 % ,与标准前向型神经网络 (FNN)比较 ,显示了较好的分类效果。 A GMDH-type neural network and its modified training algorithm were presented in this paper to improve the classifying accuracy of EEG with different mental tasks. The network was formed through evolution, the classification rules were described by a concise set of polynomials and the training algorithm was able to prevent overfitting effectively. Experimental results showed the GMDH-type nearal could classify the EEG of math or relaxtasks with accuracy of 84. 5 % . It was indicated that GMDH-type neural network exhibited higher classifying accuracy compared to the feedforward neural network (FNN).
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2005年第1期66-69,共4页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (60 3 75 0 17)。
关键词 GMDH型神经网络 前向型神经网络 脑电信号 多项式 Algorithms Biomedical engineering Feedforward neural networks Polynomials Psychophysiology
  • 相关文献

参考文献14

  • 1Wolpaw JR, McFarland DJ, Vaughan TM. Brain-Computer Interface Research at Wadsworth Center [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8(2) : 222 - 226. 被引量:1
  • 2Pfurtschener G, Neuper C, Guger C. Current Trends in Graz Brain-Computer Interface ( BCI ) Research [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 ( 2 ) : 216 - 219. 被引量:1
  • 3Wolpaw JR. Brain-computer interfaces for communication and control[ J ] . Clin. Neurophysiol., 2002,113 : 767 - 791. 被引量:1
  • 4Charles W. Anderson, Zlatko Sijjercic. Classification of EEG Signals from Four Subjects During Five Mental Tasks [ J 3. Scientific Programming, 1995,4(3) : 171 - 183. 被引量:1
  • 5Tetsuya Hoya, Gen Hori,Hovagim Bakardjian, et al. Classification of single trial EEG signals by a combined principal + independent component analysis and probabilistic neural network approach[ C ].4^th International Sympesition on Independent component analysis and Blind Signal Separation( ICA2003). 2003 : 197 - 202. 被引量:1
  • 6Milláin J. del R, Mourinio J, Franzé M, et al. A local neural classifier for the recognition of EEG patterns associated to mental tasks [ J]. IEEE Transactions on Neural Networks, 2002,13 ( 3 ) : 678- 686. 被引量:1
  • 7Bao-Liang Lu, Jong Shin, Michinori Ichikawa. Fast classification of high-dimensional EEG signals using rain-max modular neural network [ J ]. RIKEN Review No. 40 ( October, 2001 ) : Focused on High Performance Computing in RIKEN,2000,58- 62. 被引量:1
  • 8Nikolaev NL, Iba H. Automated Discovery of Polynomials by Inductive Genetic Programming[J]. In: J. M. Zutkow and J. Ranch(des.) ,Principles of Data Mining and Knowledge Discovery. Third European Conference PKDD' 99, LNAI 1704, Springer, Berlin, 1999,456 - 461. 被引量:1
  • 9Iba H, Sato T. Genetic Programming with Local Hill-Climbing [ J ].In:Davidir, Y., Schwefel H. P., Manner R. (eds.), Parallel Problem Solving from Nature, Springer-Verlag, 1994,302 - 311. 被引量:1
  • 10Vitaly Schetinin. Polynomial Neural Networks Learnt to Classify EEG Signals[ C]. NIMIA-SC2001-2001 NATO Advanced Study Institute on Neural Networks for Instrumentation, Measurement, and Related Industrial Applications : Study Cases Crema. 2001,155 - 162. 被引量:1

同被引文献24

  • 1薛建中,和卫星,闫相国,郑崇勋.基于小波包分析的意识任务特征提取与分类[J].生物医学工程学杂志,2004,21(3):397-400. 被引量:6
  • 2张宾,贺昌政.GMDH算法的终止法则研究[J].吉林大学学报(信息科学版),2005,23(3):257-262. 被引量:5
  • 3谢芳,肖冬荣,徐璐婷,夏景明.从复杂系统建模角度研究网络经济测度[J].微计算机信息,2006,22(08X):239-241. 被引量:4
  • 4曹鹏,李金龙,张泽明,王煦法.一种选择性GMDH网络集成算法[J].计算机应用,2006,26(11):2554-2557. 被引量:1
  • 5IVAKHNENKO A G, SAVCHENKO E A. Problems of further GMDH algorithms development [ J ]. System Analysis Modelling Simulation, 2003, 43 (10) : 1301- 1309. 被引量:1
  • 6Sung-Kwun Oh, Witold Pedrycz. The design of self-organizing neural networks based on PNs and FPNs with the aid of genetic optimization and extended GMDH method[J]. International Journal of Approximate Reasoning, 2006,43 (1) : 26-58. 被引量:1
  • 7KOZUBOVSKIY S F. Use of GMDH to optimize the basic parameters of a jet system for measuring velocities of air streams [ J]. Soviet Journal of Automation and Information Science, 1987,20(1) : 85-90. 被引量:1
  • 8Johann-Adolf Mailer. Self-organising modelling as a part of simulation process[J]. System Analysis Modelling Simulation,2003,43(10):1283-1299. 被引量:1
  • 9ANASTASAKIS L, MORT N. The development of a combined GMDH algorithm for the prediction of the GBPUSD exchange rate [ C]. Proceedings of the 2nd International Scientific Conference on Information Technology and Quality. Paisley: University of Paisley, 2005 : 109-114. 被引量:1
  • 10Vaughan TM,Heetderks WJ,Trejo LJ,et al.Brain-computer interface technology:a review of the second international meeting.IEEE Trans Rehab Eng 2003;11(2):94-109. 被引量:1

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部