期刊文献+

部分变量迭代法求解几何循环约束 被引量:2

Recurrent Geometric Constraints Solved with the Partial Variable Iteration Method
下载PDF
导出
摘要 在对几何约束进行求解时,一般先要进行适当分解,然后再根据分解得到的求解次序进行依次求解。当同时进行求解的约束数量较多时,必须采用数值解法。如果这样的循环约束中变量的数量较多,则采用全部变量迭代的方法会导致计算不稳定,且计算时间较长。本文提出了部分变量进行迭代的方法,大大降低了迭代变量的个数,增加了计算的稳定性,缩短了计算时间。 When solving a geometric constraint, we usually decompose it with proper methods. Then, it can be computed according to the sequences of decomposition. If there are many constraints to be solved at the same time, numerical methods must be applied. If all the variables in the concurrent constraint problem are iterated, the calculation process will become unstable and slow. This article presents a method with only partial variables iterated during the calculation process, which greatly reduces the number of variables to be iterated. So, the calculation process will be stable, and the calculation time will be shortened.
出处 《计算机工程与科学》 CSCD 2005年第5期29-32,共4页 Computer Engineering & Science
关键词 计算机辅助设计 CAD 部分变量迭代法 循环约束 几何约束 数值解法 CAD recurrent constraint solving geometric constraint partial variable iteration method
  • 相关文献

参考文献8

  • 1Aldefeld B. Variation of Geometrices Based on a Geometric-Reasoning Method[J]. Computer Aided Design, 1988,20(3):117-126. 被引量:1
  • 2Lee J Y, Kim K.A 2-D Geometric Constraint Solver Using DOF Based Graph Reduction[J]. Computer Aided Design, 1998,30(11):883-896. 被引量:1
  • 3Kondo K. A Gebraic Method for Manipulation of Dimensional Relation Ships in Geometric Models[J]. Computer Aided Design, 1992,24(3):141-147. 被引量:1
  • 4Solano L, Brunet P. Contructive Constraint-Based Model for Parametric CADSystem[J]. Computer Aided Design, 1994,26(8):614-621. 被引量:1
  • 5Lin V C,Gossard D C. Variational Geometry:Modification in Computer Aided Design[J]. Computer Graphics, 1981,15(3):171-179. 被引量:1
  • 6彭小波,陈立平,周济.面向欠约束几何系统的一种同伦求解方法[J].中国图象图形学报(A辑),2002,7(9):956-961. 被引量:5
  • 7Lee K Y, Kwon O H, Lee J Y, et al. A Hybrid Approach to Geometric Constraint Solving with Graph Analysis and Reduction[J]. Advances in Engineering Software, 2003, 34(2):103-113. 被引量:1
  • 8N Sridhar, R Agrawal, G L Kinzel. Algorithms for the Structural Diagnosisand Decomposition of Sparse Under-Constrained Design Systems[J]. Computer Aided Design, 1996,25(4):237-249. 被引量:1

二级参考文献3

共引文献4

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部