期刊文献+

基于ANN-GA的注塑参数优化系统及其应用(英文) 被引量:1

An Injection Molding Parameter Optimization System Based on Hybrid Neural Network and Genetic Algorithm and its Application
下载PDF
导出
摘要 在以人工智能技术为基础的注塑工艺参数优化系统的开发方面进行了研究.构建了以混合神经网络与遗传算法方法为基础,并结合CAE技术的参数优化系统,编制了应用程序.通过工程实例,将参数优化系统的预测结果与CAE模拟结果进行比较和误差分析,显示出优化系统的稳定性和可靠性;优化结果与CAE模拟结果及实验验证的结果具有一致性.证明优化结果是正确的,表明基于混合神经网络与遗传算法方法的注塑工艺参数优化系统具有工程应用价值. In this paper, research has been done on development of optimization system for injection molding parameters on the basis of artificial intelligence. Based on hybrid neural network and genetic algorithm approach, a parameter optimization system is established and the application program is also developed. The comparison and error analysis are made between the optimization system predicted result and CAE simulated result through engineering examples, that shows the optimization system is stable and reliable. The optimized outcome, being consistent with CAE simulated one and experiment tested one, is proved to be correct, which indicates that the optimization system is valuable in engineering application.
作者 郑生荣
出处 《南昌工程学院学报》 CAS 2005年第1期39-46,共8页 Journal of Nanchang Institute of Technology
基金 江西省科技厅科技基金资助项目(Z1891).
关键词 人工智能技术 注塑工艺 参数优化系统 神经网络 遗传算法方法 CAE技术 Neural network Genetic algorithm injection molding parameter optimization
  • 相关文献

参考文献9

  • 1CONG Shuang.The Theory andApplication of Neural Network Facing MATLAB Toolbox[M].Hefei:Chinese Science andTechnology University Publishing House,1998. 被引量:1
  • 2ZHONG Yi-xin.The Artificial Intelligence and Neural Network[M]. Beijing:People'sPost Publishing House,1992. 被引量:1
  • 3WANG Bao-guo,GAO Fu-rong, Yue Polock. Neural Network Approach to Predict MeltTemperature in Injection Processes[J]. Chinese J. of Chem. Eng. 2000,8 (4):326-331. 被引量:1
  • 4Demuth H, Beale M. Neural Network Toolbox-User's Guide[M]. The MathWorks Inc.,1993. 被引量:1
  • 5WANG Xiao-ping,CAO Li-ming,Genetic Algorithm-Theory.Application and SoftwareRealization[M].Xian:Xian Jiaotong University Publishing House,2002. 被引量:1
  • 6TAIANA PTROVA,DAVID KAZMER. Hybrid Neural Models for Pressure Control in InjectionMolding[J]. Advances in Polymer Technology. 1999,18(1):19-31. 被引量:1
  • 7S L Mok, C K Kwong, W S Lau. A Hybrid Neural Network and Genetic Algorithm Approachto the Determination of Initial Process Parameters for Injection Moulding[J]. TheInternational Journal of Advanced Manufacturing Technology,2001,18: 404-409. 被引量:1
  • 8WEN Xin,ZHOU Lu,WANG Dan-li,et al.MATLAB Neural Network Application and Design[M].Beijing:The Science Publishing House,2000. 被引量:1
  • 9P K D V Yarlagadda. Prediction of Processing Parameters for Injection Moulding byUsing a Hybrid Neural Network[J]. Proc Instn Mech Engrs, 2001,215 (Part B):1465-1470. 被引量:1

同被引文献17

  • 1张磊.基于神经网络注塑成型工艺参数优化[J].制造技术与机床,2007(5):77-80. 被引量:4
  • 2陈晓平,胡树根.神经网络与正交试验法结合优化注射工艺参数[J].模具工业,2007,33(7):1-5. 被引量:15
  • 3王兴天.注塑技术与注射机[M].北京:化学工业出版社,2005. 被引量:3
  • 4飞思卡尔科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005. 被引量:1
  • 5陈大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社.2006. 被引量:2
  • 6Karataza Cetin, Sozena Adnan, Arcakliolub Erol, et al. Modelling of yield length in the mould of commercial plastics using artificial neural networks[J ]. Materials & Design, 2007, 28 ( 1 ) : 278 - 286. 被引量:1
  • 7Ozcelik B, Erzurumlu T. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural net- work model and genetic algorithm[J]. Journal of Materials Proeessing Technology, 2006,171 (3) : 437 - 445. 被引量:1
  • 8飞思卡尔科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003. 被引量:1
  • 9Yarlagadda Prasad K D V, Khong Cobby Ang Teck. Development of a hybrid neural network system for prediction of process parameters in injection moulding [ J ]. Journal of Materials Processing Technology,2001,118(1 - 3) : 109 - 115. 被引量:1
  • 10Hasan Oktem. Application of taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part [ j ]. Materials and Design, 2007 (28) : 1271 - 1278. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部