摘要
应用GagliardoNirenberg不等式证明了LotkaVolterra捕食者食饵三角交错扩散模型的整体解的存在唯一性与一致有界性;由Lyapunov函数给出了该系统正平衡点的全局渐近稳定性.
The existence,uniqueness and uniform boundedness of global solution for Lotka-Volterra prey-predator model with triangular cross-diffusion are proved by using Gagliardo-Nirenberg type inequalities.Meanwhile,the globally asymptotical stability of the positive equilibrium point of the model is given by Lyapunov function.
出处
《西北师范大学学报(自然科学版)》
CAS
2005年第3期1-5,共5页
Journal of Northwest Normal University(Natural Science)
基金
甘肃省自然科学基金资助项目(ZS031-A25-003-Z)
天元基金资助项目(10226029)
关键词
交错扩散
自扩散
一致有界
稳定性
cross-diffusion
self-diffusion
uniform boundedness
stability