期刊文献+

二重标准平面选址问题的Voronoi图算法

Voronoi Diagrams Algorithm for Bicriteria Planar Location Problems
原文传递
导出
摘要  在分析军事和民用设施平面选址目标的基础上,归纳建立了minisum与minimax、maximin与minimax两类二重标准平面选址模型,结合实例提出了Voronoi图与固定步长搜索相结合的求解方法:首先,根据选址点与需求点及负面影响点的平面位置关系,分析画出选址问题的最远点和最近点加权Voronoi图;其次在指定的Voronoi多边形边线上按固定步长搜索出二重标准平面选址模型的非劣集;最后绘制出二重目标值的权衡取舍曲线. Two types of bicriteria planar location models associated with the minisum and minimax criteria, the maximin and minimax criteria are set up, based on the analysis of the location objects of military and civilian facilities. The method for searching of the solution by Voronoi diagram and resolution limiting in relation to the instances are put forward. First the weighted Voronoi diagrams of the farthest-point and nearest-point for the location problem are drawn, relying on the relationship between the facility and demand points or negative influence points in the planar. Next, the noninferior set of the bicriteria planar location models are searched according to resolution limiting in the specified edges of the Voronoi polygons. In the end, the tradeoff curves of the bicriteria target values are described.
作者 翁东风 费奇
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第4期120-123,144,共5页 Systems Engineering-Theory & Practice
基金 国家社会科学基金(02GJ207-026)
关键词 设施选址 二重标准 VORONOI图 facility location bicriteria Voronoi diagram
  • 相关文献

参考文献6

  • 1Voronoi G. Nouvelles applications des paratrés continues à la the théorie des forms quadratiques. Deuxième menoie recherches sur les parallelloèdres primitives[J]. Journal für die Reine und Angewandte Mathematik 1908, 134: 198-287. 被引量:1
  • 2Shmos M I, Hoey D. Close-point problem[A]. Proceedings of the 16th Annual IEEE Symposium on Foundation of Computer Science[C], 1975: 151-162. 被引量:1
  • 3Okabe A, Boots B,Sugihara K. Spatial Tessellations: Concepts and applications of Voronoi Diagrams[M]. Wiley, Chichester, UK, 1992. 被引量:1
  • 4Ohsawa Y,Imai A. Degree of locational freedom in a single facility Euclidean minimax location model[J]. Location Science, 1997, 4: 69-82. 被引量:1
  • 5Ohsawa Y. A geometrical solution for quadratic bicriteria location model[J]. Europe Journal Operation Research. 1999, 144: 380-388. 被引量:1
  • 6Ohsawa Yoshiaki. Bicriteria euclidean location associated with maximin and minimax criteria[J]. Naval Research Logistic, 2000,47:581-592. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部