摘要
在连续介质微观力学中,有两类基于微结构信息确定非匀质介质有效性能的基本理论:基于物理的平均场理论和基于数学的渐近均匀化理论.讨论了采用渐近均匀化理论求解具有孔洞的、具有周期性微结构的线弹性复合材料的有效弹性张量的提法、解法和步骤.以渐近均匀化方法为例。
There are two basic theories in continuum micromechanics for obtaining the effective properties of a heterogeneous medium based on the information of the microstructures, the average-field theory and the asymptotic homogenization theory. In this paper, the formulation, the method and the process of solution of obtaining the effective elastic tensor for linear elastic composites with a porous body and periodic microstructures by using the asymptotic homogenization theory are discussed. Taking the asymptotic homogenization method as an example, the application of correspondence principle in micromechanics for finding the solution of linear viscoelastic problems is discussed.
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2005年第1期11-16,共6页
Natural Science Journal of Xiangtan University
基金
湖南省自然科学基金资助项目 (0 1JJY3 0 0 1)
关键词
连续介质微观力学
作均匀介质
渐近均匀化理论
多尺度力学
宏观-微观关系
continuum micromechanics
heterogeneous media
asymptotic homogenization theory
multi-scale mechanics
macro-micro relations