摘要
给出了稳定流条件下,同时考虑随深度变化的一阶降解和随深度变化的线性平衡吸附时,一维溶质运移的对流 弥散方程。在初始浓度为零,半无限一维空间内定通量边界条件下,推导出了溶质相对浓度的准解析表达式。用特征有限元法建立了相应的数值模型,从数值解和准解析解的计算数据可以看出:数值计算所产生的误差很小,能满足实际工作对计算精度的要求。
The advection-dispersion model of 1-D solute transport through soils with depth-dependent first-order degradation and depth-dependent linear equilibrium sorption under steady state flow is studied, and a quasi-analytical solution describing the concentration distribution is deduced under the initial zero concentration and the constant flux boundary condition of a semi-infinite 1-D space. The numerical model of the advection-dispersion model is constructed by the characteristic finite element method. It can be seen from comparing the numerical solutions to the quasi-analytical solutions that the errors caused by the numerical computation are so small that the numerical model perfectly meets the demand of the calculation precision in practical work.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2005年第2期226-232,共7页
Chinese Journal of Hydrodynamics
基金
国家自然科学基金资助项目(59879022)
西安理工大学科技创新项目(108 210301)
关键词
对流-弥散方程
吸附
降解
准解析解
特征有限元法
advection-dispersion model
sorption
degradation
quasi-analytical solution
the characteristic finite element method