期刊文献+

基于时域精细积分算法的瞬态传热多宗量反演 被引量:3

Precise Integral Algorithm Based Solution for Transient Inverse Heat Conduction Problems With Multi-Variables
下载PDF
导出
摘要  基于有限元法和精细积分算法,提出了一种求解瞬态热传导多宗量反演问题的新方法· 采用有限元法和精细积分算法分别对空间、时间变量进行离散,可以得到正演问题高精度的半解析数值模型,由此建立了多宗量反演的计算模式,并给出敏度分析的计算公式· 对一维和二维的热物性参数、热源项、边界条件等进行了单宗量和多宗量的反演求解,初步考虑了初值和噪音等对反演结果的影响。 By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi_variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi_analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source_related terms etc. are given to validate the approach proposed in 1_D and 2_D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第5期512-518,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10172024 10272064) 973NKBRSF基金资助项目(G1999032805) 教育部重点基金资助项目(99149) 教育部骨干教师基金资助项目(2000_65) 归国留学人员启动基金资助项目(1999_363) 工业装备结构分析国家重点实验室开放基金资助项目(GZ9814)
关键词 热传导 反问题 多宗量 精细积分算法 有限元 heat conduction inverse problem multi_variables precise integral algorithm finite element
  • 相关文献

参考文献11

  • 1蔡志勤..精细逐步积分及其部分演化[D].大连理工大学,1998:
  • 2王勖成,邵敏编著..有限单元法基本原理和数值方法 第2版[M].北京:清华大学出版社,1997:568.
  • 3王德人编..非线性方程组解法与最优化方法[M].北京:人民教育出版社,1979:272.
  • 4Huang C H, Yan J Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity[ J]. Iht J Heat and Mass Transfer, 1995,38(18) :3433-3441. 被引量:1
  • 5Tervola P. A method to determine the the thermal conductivity from measured temperature profile [ J].Int J Heat and Mass Transfer, 1989,32(8): 1425-1430. 被引量:1
  • 6Huang C H, Chao B H. An inverse geometry problem in identifying irregular boundary configurations[J]. Int J Heat and Mass Transfer, 1997,40(9) :2045-2053. 被引量:1
  • 7Huang C H, Osizik M N. Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct[ J]. Numerical Heat Transfer, Part A, 1992,21( 1 ) :55-70. 被引量:1
  • 8Huang C H, Osizik M N. Optimal regularization method to determine the unknown strength of a surface heat source[J]. Int J of Heat and Fluid Flow , 1991,12(2): 173-178. 被引量:1
  • 9Refahi A K, Yvon J. Determination of heat sources and heat transfer coefficient for two-dimensional heat flow-numerical and experimental study[ J]. Int J Heat and Mass Transfer,2001,44(7):1309-1322. 被引量:1
  • 10Tseng A A, Chen T C, Zhao F Z. Direct sensitivity coefficient method for solving two-dimensional inverse heat conduction problems by finite-element scheme[ J] .Numerical Heat Transfer, Part B,1995,27(3) :291-307. 被引量:1

同被引文献56

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部