期刊文献+

基于小波域分类隐马尔可夫树模型的图像去噪 被引量:8

Denoising method based on Wavelet-Domain Classified Hidden Markov Tree Model
下载PDF
导出
摘要 为适应图像的空域非平稳变化,提出了一种基于小波域分类隐马尔可夫树(CHMT)模型的图像去噪方法。该模型中,图像在每一尺度每一子带的小波系数均被分成C组以突出其空域非平稳变化的特征,这样原来的一棵小波四叉树被分成了C棵具有不同HMT参数的小波四叉树,再经过合理的初始化和期望最大化(EM)算法训练参数,反变换恢复。实验结果表明,与已有方法相比,该方法在不增加计算量的前提下,明显改善了所恢复图像的质量(PSNR)。 In order to adapt spatial nonstationary character of an image, a denoising method based on Wavelet-Domain Classified Hidden Markov Tree Model (CHMT) is proposed.In this method,image's coefficients of every scale and subband are divided into C groups to emphasize the spatial nonstationary character,so that one image corresponds with C HMTs.Then these coefficients are initialized,trained by EM algorithm and inverse-transformed.Test result shows that this method improves image quality (PSNR) obviously while calculation doesn't add.
出处 《红外与激光工程》 EI CSCD 北大核心 2005年第2期232-235,共4页 Infrared and Laser Engineering
关键词 CHMT模型 去噪 EM算法 初始化 Algorithms Image quality Markov processes Mathematical models Trees (mathematics) Wavelet transforms
  • 相关文献

参考文献6

  • 1Baum L E , Eagon J A.An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology[J].Bulletin of American Mathematical Statisti cs, 1967,37: 360- 363. 被引量:1
  • 2Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77(2):257-286. 被引量:1
  • 3Crouse M S,Nowak R D,Baraniuk R C. Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Trans Signal Processing, 1998,46(4 ) :886-902. 被引量:1
  • 4Romberg J K,Hyeokho Choi,Baraniuk R G.Bayesian tree structured image modeling using wavelet-domain hidden Markov models[J].IEEE Trans Image Processing, 2001,10(7):1056-1067. 被引量:1
  • 5Donoho D,Johnstone I.Adapting to unknown smoothness via wavelet shrinkage[J]. Ameri Stat Assoc,1995,90(12):1200-1224. 被引量:1
  • 6Fan G,Xia X-G.Wavelet-based statistical image processing using Hidden Markov Tree model[A].In:Proceedings 34th Annual Conference on Information Sciences and Systems[C].New Jersey:Princeton, 2000. 被引量:1

同被引文献65

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部