期刊文献+

随机配置问题的概率分析

Probabilistic Analysis for the Random Assignment Problem
下载PDF
导出
摘要 假设(ti,j)1≤i,j≤n是一个n×n的具有独立同分布,参数为1的指数费用矩阵.考虑最优配置费用Ane=:minπsumfromi=1ton=1ti,π(i),其中π=(π(1),…,π(n))为1,2,…,n的排列.本文目的是对最近关于平均最优配置费用EAne的研究进展作些评论,特别关注Aldous的目标方法和局部弱收敛性,以及著名的Parisi猜想和证明.文章结尾包含了一些尚未解决的问题,值得进一步研究. Suppose that (ti,j)1≤i,j≤n is an n×n cost matrix of independent exponential random variables with parameter 1. Consider the optimal assignment cost Ane =: minπ sum from i=1 to n=1 ti,π(i), where π = (π(1),…,π(n)) is a permutation of 1,2,… ,n. This paper reviews some recent developments on EAne, and the focus will be upon Aldous' objective methods and local weak convergence, as well as the celebrated Parisi conjecture with proofs. Several challenging mathematical problems are presented at the end of the paper.
作者 苏中根
机构地区 浙江大学数学系
出处 《数学进展》 CSCD 北大核心 2005年第2期133-144,共12页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10371109).
关键词 渐近本质唯一性 目标方法 PaLrisi猜想 随机配置 asymptotic essential uniqueness objetcive metheods Parisi's conjecture random assignment problem
  • 相关文献

参考文献17

  • 1Aldous D. Asymptotics in the random assignment problem [J]. Probability Theory and Related Fields.,1992, 93: 507-534. 被引量:1
  • 2Aldous D. The ζ(2) Limit in the random assignment problem [J]. Random Structures Algorithms, 2001,18: 381-418. 被引量:1
  • 3Aldous D, Steele M. Asymptotics of euclidean minimal spanning trees on random samples [J]. Probability Theory and Related Fields, 1992, 92: 247-258. 被引量:1
  • 4Aldous D, Steele M. The Objective Method: Probabilistic combinatorial optimization and local weak convergence. Probability on Discrete Structures [M]. (Volume 110 of Encyclopaedia of Mathematical Sciences), ed. H. Kesten, p. 1-72. Springer, 2003. 被引量:1
  • 5Aldous D, Steele M. Asymptotic essential uniquness property for minimal spanning trees on random points [Z]. Manuscript. 被引量:1
  • 6Alm S, Sorkin G. Exact expectations and distributions for the random assignment problem [J]. Combinatorics, Probatbility, and Computing, 2002, 11: 217-248. 被引量:1
  • 7Buck W, Chan C, Robbins P. On the expected value of the minimal assignment [J]. Random Structures Algorithms, 2002, 21: 33-58. 被引量:1
  • 8Coppersmith D, Sorkin G. Constructive bounds and exact exectations for the random assignment problem [J]. Random Structures Algorithms, 1999, 15: 113-144. 被引量:1
  • 9Freize A, Sorkin G. The probabilistic relationship between the assignment problem and asymmetric travelling salesman problems [J]. Proceedings of SODA, 2001, ACM, 651-660. 被引量:1
  • 10Houdayer J, Bouter de Monvel J, Martin O. Comparing mean field and Euclidean matching problems [J].European Physical Journal B, 1998, 6: 383-393. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部